Pese

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 7 25 FUNSTON ROAD KANSAS CITY, KANSAS 66115

RECEIVEL

SEP 13 1991

SAFE SECTION SEP 12 1991 Date: **MEMORANDUM** Data Transmittal for Activity #: SUBJECT: Site Desciption: FROM: Andrea Jirka 🗸 Chief, Laboratory Branch, ENSV TO: Robert Morby Chief, Superfund Branch, WSTM ATTN: Attached is the data transmittal for the above referenced site. This should be considered a _____ Partial or ____ Complete data transmittal (completes transmittal of). If you have have any questions or comments, please contact Dee Simmons at 551-5129. **Attachments** cc: Data Files Jacobs Eng.

NOTE: Please see Mary Gerken, SPFD-WSTM, if you want an

electronic copy of the data.

30216127 Superfund Char Falls Finep

IA0984571117

Chier: EPA

RECYCLE (2)

DR.	ΑF	π.
-----	----	----

FIELD SHEET

•	•	U.S.	ENVIRONMEN	JAT	PROTI	ECTION	AGENCY	r, REG	TON VII	ľ	
F.NV	IRONi	1ENTAL	SERVICES	DIV.	. 25	FUNSTO	N RD.	KANSAS	CITY,	KS	46115

ACTIVITY DES: CEDAR FALLS FMGP LOCATION: CEDAR FALLS SAMPLE DES: LOCATION: CEDAR FALLS TA BEG: 07/29/91 11:40 EAST: CASE/BATCH/SNO: CASE/BA		P F O	P1.: S P	1EDTA: SOT	dcc:NED.	X72 SANNO: 004	FY: 91 ACTNO: DSX72
SAMPLE DES: DATE TIME FROM REF LOCATION: CEDAR FALLS TA BEG: 07/29/91 U:40 EAST:CASE/BATCH/SNO:// LAB:END: _/20/:NORTH:				ECT NUM: 4	IA PROJECT	FALLS 1	LOCATION: CEDAR FAL
DIDUCTA ORIGINA INO TITLE DIDUCTA ORIGINALE DI ORIGINALE DIDUCTA ORIGINALE DIDUCTA ORIGINALE DI ORIGINALE DIDUCTA ORIGINA ORIGINA ORIGINA ORIGINA ORIGINA ORIGINA ORIGINA ORIG	FPT	IJME FROM RE U:40 EAST: _:_ NURTH: DOWN:	DATE 1 07/29/91 L _/30/	BEG:	TA	FALLS T:	SAMPLE DES: LOCATION: CEDAR FAL
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE MGP NAME GLASS NONE SV VOLATILES GLASS ICED SS SEMIVOLATILES GLASS ICED SM METALS Cyanide GLASS NONE SIOP CYANIDE	y -	ada by (smgg)	F5 de	NAME OLATILES SEMIVOLATI SETALS YANIDE	MGP NAME SV 'VOLA SS 'SEMI SM 'META STOS CYAN		CONTAINER PRE GLASS NON GLASS ICE GLASS ICE

sample collected at location 3.55, from a depth at 4.5 bg.

Microtip readings of Oppm

Split with CFU

SAMPLE COLLECTED BY : Mark Griffs

•			
	U.S. ENVIRONMENTAL		, REGION VII KANSAS CITY, KS 66115
FY: 91 AC	TNO: DSX72 SAMNU: 00	5 QCC: _ MEDIA: SO	IL PL: S P F D
	DES: CEDAR FALLS FMG CEDAR FALLS		REF LATTIUDE:
LUCATION: CASE/BATC		IA BEG	DATE TIME FROM REF P : 07/29/91 /2:35 EAST: : _/30/ : NURTH: DOWN:
ANALYS (S CONTAINER GLASS			
GLASS -	1CED	SS SENIVOLAT	TEST ada Hysray.

COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER:___ OPERABLE UNIT:___

location 45 collected from 1.8 bg Microtip readings at Oppm

SAMPLE COLLECTED BY : Mark Groffing

J) F	lΑ	F	ľ
------	----	---	---

FY: 91 ACTNO	: DSX72 SAMNU: 006	QCC: _ MEOTA: SOIL PL: S.P.F.D
	: DEDAR FALLS FMGP DAR FALLS	REF LATITUDE: IA PROJECI NUM: A34 PT: LONGITUDE:
SAMPLE DES:		DATE TIME FROM REF P TA BEG: 07/29/91 (2:55 EAST:
LOCATION: ÇE	DAR FALLS	TA BEG: 07/29/91 12:55 EAST:
CASE ZHAT CHZS	Ma:/_/	. LAR: END:/22/:_ NORTH:
STORETZSAROA	0 NU:	DUN:
ANALYS)S REQ	UESTED:	
CONTAINER	PRESERVATIVE	MUP NAME
GLASS	NONE	SV VOLATILES
GLASS	TOED	SY VOLATILES and Hy (SMZY), SM METALS COMING
เส.ครร	ICED	SN METALS Comin
ថា.Aអន	NINE	STAP CYANIDE
	•	
	•	

Jocation 455 Samples collected from 5 to 5.5 bg

•			•			
U.	S. ENVIRONMENTAL. TAL SERVICES DIV	PROTECT	TON AGENCY,			
FY: 91 ACTNO:	DSX72 SAMNO: 00	7 QCC: _	MEDIA: SOI	L. PL: S.P.	F D	
	CEDAR FALLS FMGI AR FALLS				TTUDE:	
SAMPLE DES: LOCATION: CED CASE/BATCH/SM STORET/SAROAD	AR FALLS U:/_/	TA LAB:	BEC:	DATE 11 07/29/91 15 _/30/_/S	IMESUFROM REF F 1:00 FAS1: 1:15 NORTH: DOWN:	
ANALYSIS REQU	ESTED:					
CONTAINER	PRESERVATIVE	MGP	NAME		•	
GLASS	NONE	SV	VOLATTLES		11 /	
GLASS	ICED	88	SEMIVOLATE	ties add	15 BASIN	
GLASS	ICED ICED	នក	METALS/CU	anida	16,30,	

COMMENTS: FOR SUPERFUND ONLY: SUBSITE COENTIFIER:___ OPERABLE UNIT:__

somple taken from location 25 for the above parameters. Taken from 5plits were taken

SAMPLE COLLECTED BY : Paul Kieler

U.S.	ENVIRONMENTAL.	TELD SHEET PROTECTION AGENCY, 25 FUNSION RD. KAI	REGION VII NSAS CITY, KS 66115	. · ·
FY: 91 ACTNU: 0	9X72 SAMNO: 008	QCC: _ MEDIA: SOIL	PL: S P F D	•
ACTIVITY DES: C LOCATION: CEDAR	EDAR FALLS FMGP FALLS	IA PROJECT NUM: A3	REF LACTIONE:	-
SAMPLE DES: LOCATION: DEDAR CASE/BATCH/SMO: SIORET/SAROAD N	/_/	TA BEG: (DATE TIME FROM REF P1 07/24/91 (5:2) CEAST: _/30 : NURTH: 	· ·
ANALYS)S REQUES CONTAINER GLASS GLASS GLASS GLASS	TED: PRESERVATIVE NONE ICED LCED NONE	MGP NAME SV VOLATILES SS SEMIVOLATION SM METALS CYAN	wide add by Emzy).	
Jamp	le location		from 4-412 fee	2 †
Splito	s were tak	en,		

FY: 91 ACTNO:	TAL SERVICES DIV DSX72 SAMMO: 00	e cicc: p	MEDIA: SOIL	PL: S F F	[)
ACT) VITY DES: LOCATION: DED	CEDAR FALLS FMG AR FALLS	P IA PRO	JECT NUM: A3	REF LATITU 4 PT: LONGIT	
SAMPLE DES: LUCATION: CED CASE/BAICH/SM STORET/SAROAD	AR FALLS D:/_/ NO:	IA LAB:	BFG: END:	DATE TIME 07/29/91 /5:3 7/30/91	FROM REF PT DEAST: NORTH: DOWN:
GLASS GLASS	PRESERVATIVE	MGP •SV •SS •SM •S109	NAME VOLATILES SENTVOLATION METALES CYANIDE	ES 7 (SM34)	add by:

I)	Я	Δ	۴	T	
٠,			•		

FIELD SHEET

U.S. ENVIRONMEN ENVIRONMENTAL SERVICES	DIV. 25 FUNSTON R	•	56115
(: 91 AC(N)): DSX72 SAMNO:		80 (I. PL: S P F D	10 and all Mar Well 1000 and 1000 type and 1000 and
CITYITY DES: CEDAR FALLS CATION: CEDAR FALLS		REF LATITUDE M: A34 PT: LONGITUD	
AMPLE DES: TRIP BLANK DCATION: CEDAR FALLS ASEZBAICHZSMO:Z CORETZSARDAD NO:	TA LAB:		

ANALYSIS REQUESTED:

CONTAINER GLASS PRESERVACTVE

MONE

MILP NAME

SV / VOLATILES

COMMENTS: FOR SUPERFUND ONLY: SUBSITE (DENCLETER: OPERABLE

Trip Blank prepared by EPA Region VII Lab

					•
	FNVIRONMENTAL AL SERVICES DIV	PROTECTION			66115
FY: 91 ACTNO: 1	DSX72 SAMNO: 10:	i dcc: _ NHX	IA: WATER	PL: S P F D	
	CEDAR FALLS FMGF R FALLS			REF LATITUO Pi: LONGITU	
SANPLE DES: LOCATION: CEDAI CASE/HATCH/SMO STORET/SAROAD I	R FALLS : NO:	TA LAR:	BEG: 07		FROM REF P1) EAST: NORTH: DOWN:
ANALYSIS REQUES CONTAINER 2 VOA VIALS GLASS BOZ GLASS CURT 8 OZ GLAS		MGP NAM , WY SV ' VOL , WY SM ME1 , WTAR PYA	ATILES LVDLATTLES ALSTOYANI		4 (Snzy).

Sample taken from background location

from 21/2-31/2 feet below ground surface

Paul Kieler Bon Aston

SAMPLE COLLECTED BY

D	•	•	_	- 100
11	v	\sim	-	
37	и	. 7		

FIELD SHEET

u.s.	ENVIRONMENT	AL.	PROTECTIO	N AGENC	Y, RFG	ננע אחד	i	
ENVIRONMENTA	J. SERVICES D	itA"	25 FUNS	TUN RD.	KANSAS	DITY,	KS	6611 5

FY: 91 ACTNO: DSX72 SAMNO: 103 QCC: _ MEDIA: WAIER PL: S P F D ACTIVITY DES: CEDAR FALLS FMGP REF LATITUDE:									····
SAMPLE DES: DATE TIME FROM REF	•						SPFI)	
SAMPLE DES: DATE TIME FROM REF		REALLS	TA PRO	UJECT					
LOCATION: CEDAR FALLS (A BEG: 07/29/91 LO:95 EAST:	CATTON: CEDA SEZBATCHZSMO				BHG:	DA1E 07/29/1 /30/	TIME. 91 <u>(Q</u> : <u>9</u> .	ŠEAST: NORTH: ;	F P1
ANALYS)S REQUESTED:	(ALYS)S REQUE	RTED:					•		
CONTAINER PRESERVATIVE MGP NAME 2 VOA VIALS ICED UV VOLATILES GLASS ICED WS SEMIVOLATILES CUBI 5 ML HNOS UM METALS — GARD HS (WALL) CUBI NACH UT09 CYANIDE, TOTAL	ONTAINER VUA VIALS .ASS JBJ	PRESERVATIVE ICED ICED 5 ML HNO3	⊌v พร	*VOL ∙SEM	ATILES IVOLATI	LES		·	

COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER:___ OPERABLE UNTI:__

Jamples taken from onsite well#3 for above parameters.
Supplied split samples to site.

i.		^	8.	
))	ĸ	ŀ;	۲	1

FIFE D SHEET

FY: 91 ACTNO:	DSX72 SAMNO: 10	4 GCC: .	_ MEDIA: WATER	t FL: S	F F D		
ACTIVITY DES: LOCATION: CEDA	CEDAR FALLS FMG AR FALLS	TA PRI	DJECT NUM: A34	REF L	ATTTUDE ONGT (U))E:	
SAMPLE DES: LOCATION: CEDA CASE/BATCH/SMC STORET/SAROAD	AR FALLS):/ NO:	IA LAB	BEG: 6	በልፕዜታ የፖ/ <i>ጋ</i> ዓንዓና //	:	FROM RI EAST: NORTH: DOWN:	F P
2 VOA VIALS GLASS	PRESERVATIVE LOED	. MA	-√VOLATTLES -√SEKTVOLATTLE	S Pad by U	~434)- 1		
	e superfund uni.y				ERABLE	UN	100 1100

Sample collected for the about analysis from municipal ween #2. Do Splits taken

FIELD SHEET U.S. ENVIRONMENTAL PROJECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSION RD. KANSAS CITY, KS 66115 FY: 91 ACTNO: DSX72 SAMNO: 105 QCC: F MEDIA: NATER PL: S P F D ACTIVITY DES: CEDAR FALLS EMGE LOCATION: CEDAR FALLS IA PROJECT NUM: A34 PT: LONGITUDE:___ SAMPLE DES: TRIP BLANK

LUCATION: CEDAR FALLS

CASE/BATCH/SMO: ___/_ LAB: ___END: 7/30/9/_:__NORTH: ___ STORETZSAROAD NO: _____ DIIWN: ANALYSIS REQUESTED: CONTA (NER PRESERVATIVE MGP NAME 2 VOA. VIALS ICED UV /VOLATILES COMMENTS: FOR SUPERFUND ONLY: SUBSITE COENT(FIER: ___ OPERABLE UNIT: ___ Trip Blank Prepared by EPA Region VII Lab

Í	1	R	ል	F	T	

FIELD SHEET

• •	U.S.	ENVIRONMEN	JAT/	PROTE	COLON A	GENCY	, RE(+)	LON VII	Ī	
ENVIRO	NMENTAL.	SERVICES	DTV.	. 25	FUNSTON	RD.	KANSAS	CUTY,	KS.	66115

FY: 91 ACTNO:	DSX72 SAMNO: 104	4 NUC: F MEDIA: WATER PL: S P F D
	CEDAR FALLS EMGE AR FALLS	JA PROJECT NUM: A34 PT: LONGJTUDE:
SAMPLE DES: R LOCATION: CED: CASEZBATCH/SMC SIDRET/SARUAD	INSATE BLANK AR FALLS D:/_/	DATE TIME FROM REF PT IA BEG: 07729771 15:45EAST: LAB: END: 130191 : NORTH: DOWN:
ANALYSIS REQUI	ESTED:	
CONTAINER	PRESERVATIVE	MGP NAME
2 VOA VIALS		WV (VOLATILES
FILASS	TCEO	WS /SEMIVOLATILES
CUBI	5 ML HN03	UM 'METALS - aga Ho (UM).
CUBI	NAOH .	UTO9 CYANIDE COTAL OCOMA

Rinseta blank taken after sampling location 255 - EPA sample # 1) SX 72008 - after clecon

SAMPLE COLLECTED BY

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

Malila

ACTIVITY LEADER(Pr	int)	· · · · · · · · · · · · · · · · · · ·	NAME	OF SURY	EY OR ACTIVITY	$\overline{\zeta}$				DATE OF COLLECTION SHEET
Roh Asta			I Carlo		S FMG	<u></u>	•			DAY MONTH YEAR
	ICINI		E OF CONTAIN	ERS		s	AMPL		IEDIA	RECEIVING LABORATORY
SAMPLE Number	CUBITAINER NUMBI		BOTTLE AINERS PER S	BOTTLE AMPLE NUN		water	SOil	sediment	other	
D5X72-001		2.			1.		X			
DSX72-002		ス・			,		X			
D5X72- 603		Z '			1:		X			
105X7Z-004		2, '					X			
05x7z-005		2'					X			
DSX 72 - 606		21			1 .		X			
DSX72- 607		21			1 .		X	_		
USX72- 008		ح.		<u></u>	1 1		X	_		
105X7z- 009	1800	2.		<u>. </u>	<u> </u>		K	\bot		
125X72-010		X (<u> </u>		1:		Ŋ	4		
15x72 - 101		21			1.		X	_		
DSX72-102	2			<u> </u>		X	1	4	_	
PSX72-103	7 '		1'	ļ	1'	X		\dashv		· · · · · · · · · · · · · · · · · · ·
DSX72-104	2				1 '	X	Н	\dashv	<u> </u>	
DSX72-105	12 IV		Xr	<u> </u>		$\dot{\sim}$	Н	\dashv	_	
DSX72 - 106	n		[/		1'	X	\dashv	4	_	
							Н	+	-	
						_	Н	\dashv	\perp	<u> </u>
				<u> </u>			\vdash	\dashv	ļ	
				ļ. 	<u> </u>	ļ		+	+	
							Н	\dashv		
				-			Н	+	+-	
				 		-	H	\dashv		
DESCRIPTION OF SH	IDMENIT				MODE OF SHI	PMS	NT			
			201150					A D D I	E	deal Express
PIECE(S) CO			_ BOX(ES)		COMME		4L U/	AHHI	EH:	0939122096
ICE CHEST(S	S); OTHER				SAMPL	ER C	ONV	EYEC)	(SHIPPING DOCUMENT NUMBER)
PERSONNEL CUSTOD		1007						,	,	Income son and the son are son
RELINQUISHED BY (SAMPLER)	DATI	ľ		IA AA	4.	9/	3//	91	REASON FOR CHANGE OF CUSTODY
SEALED	UNSEALE	611	30 5:	30 W	LEALED Y.O	500	UN	EAI	ED [mayin
RELINQUISHED BY		DAT	E TIME	·	ECEIVED BY					REASON FOR CHANGE OF CUSTODY
SEALED	UNSEALE			h	SEALED 4	,	UN:	SEA	LED [4
RELINQUISHED BY		DAT	E TIME		ECEIVED BY					REASON FOR CHANGE OF CUSTODY
SEALED	UNSEAL	= o/−		h	SEALED		UN	SEA	LED	

ENVIRONMENTAL SERVICES ASSISTANCE TEAM - ZONE II

ICF Technology Incorporated

NSI Technology Services Corp.

The Bionetics Corp.

ESAT Region VII NSI Tech. Serv. Corp. 25 Funston Road

Kansas City, KS 66115

(913) 551-5000

TO:

Barry Evans

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

David J. Hickey

ESAT Data Reviewer

THRU:

Ronald A. Ross

ESAT Team Manager

DATE:

August 16, 1991

SUBJECT: Review of organic data for Cedar Falls FMGP

TID# 07-9103-535 ASSIGNMENT# 924 ICF ACCT# <u>26-535-02</u> NSI S.O.# <u>1073-535</u>

ESAT Document No. ESAT-VII-535-0175

These data were reviewed primarily according to the "Laboratory Data Validation Functional Guidelines for Evaluating Organic Analyses, February 1988 revision with changes given in the Region VII Organic Data Review Training Manual and EPA memorandums.

The following comments and attached data sheets are a result of the ESAT review, according to EPA policies, of the following data from the contract laboratory.

CASE NO.: 6568G

LABORATORY:

SITE: <u>Cedar Falls FMGP</u> REVIEWER: <u>David J. Hickey</u>

AATS METHOD NO.: CS0288A EPA ACTIVITY NO.: DSX72

MATRIX: WATER/SOIL

VOLATILES (WATER) **VOLATILES** (SOIL)

SMO Sample No.	EPA Sample No.	SMO Sample No.	EPA Sample No.
6568G-012	DSX72103	6568G-010	DSX72010F
6568G-013	DSX72104		
6568G-014	DSX72105F		
6568G-015	DSX72106F		
6568G-016	DSX72952P		

SEMIVOLATILES (WATER)

SMO Sample No.	EPA Sample No.
6568G-027	DSX72103
6568G-028	DSX72104
6568G-029	DSX72106F
6568G-030	DSX72948P

GENERAL

This data review assignment covers <u>5 WATER</u>, and <u>1 SOIL</u> samples analyzed for <u>VOLATILES</u>, and <u>4 WATER</u> samples analyzed for <u>SEMIVOLATILES</u> for SAS number <u>6568G</u>. There was four field blanks, four method blanks, and two performance evaluation samples included with this assignment.

1. Holding Times and Preservation

Several water samples exceeded the specified Aromatic holding times for volatiles by 3 days or less but no coding resulted. No holding times have been established for soil samples. Extraction and analysis of the waters for semivolatiles was completed within the specified time limit.

2. GC/MS Tuning

All relative ion abundances were within the established control limits.

3. Initial and Continuing Calibration

Volatiles:

*RSD was out of control for Chloromethane, Bromomethane, and 2-Butanone, but since sample results were non-detect for these compounds, no qualification was necessary. *D was out of control for Chloromethane, Methylene Chloride, Vinyl Acetate, Trans-1,3-Dichloropropene, 2-Butanone, 1,1,1-Trichloroethane, 4-Methyl-2-Pentanone, 2-Hexanone, Dibromochloromethane, and Bromoform. As a result, sample DSX72952P was J-coded for Dibromochloromethane, and sample DSX72010F was J-coded for 2-Butanone.

Semivolatiles:

*RSD was out of control for 4-Chloroaniline,
Hexachlorocyclopentadiene, 3,3'-Dichlorobenzidine, and
Benzo(k)Fluoranthene, but since all samples were non-detect for
these compounds, no qualification was necessary. *D was out of
control for Benzoic acid, 4-Chloroaniline, 3-Nitroaniline, 3,3'Dichlorobenzidine, and 4-Nitrophenol, but since all samples were
non-detect for these compounds, no qualification was necessary.

4. Internal Standard Response

All internal standard criteria were within control limits.

5. Blanks

Volatiles:

Common contaminants (Methylene Chloride, Acetone and Chloroform) were found in some of the method blanks at levels below the CRQL. Sample DSX72105F was U-coded for Methylene Chloride since results for that compound were not above 10x the blank contamination. Although Methylene Chloride and Acetone were found in one of the water field blanks, no samples were qualified. Acetone in the soil field blank did not qualify any samples because the field blank was the only soil sample.

Semivolatiles:

Both the method blank and the field blank were free of comtamination.

6. <u>Surrogate Recovery</u>

All surrogate compound recoveries were within control limits.

7. Matrix Spike/Matrix Spike Duplicate Recovery

Volatiles:

The Matrix spike/Matrix spike duplicate recoveries were within control limits. All RPDs were within control limits. There was no MS/MSD run on the soil sample.

Semivolatiles:

The Matrix spike/Matrix spike duplicate recoveries were within control limits. All RPDs were within control limits.

8. Performance Evaluation Sample

Volatiles:

Recovery of spiked analytes was very good. Acetone, which was also present in the field blank, was the only additional compound found in the performance sample. No data were qualified based on performance evaluation sample recoveries.

<u>Semivolatiles:</u>

Recovery of spiked analytes was low, with one compound (Phenol) not recovered at all. Because the sample was diluted (reason unknown), several spiked compounds were recovered, but at levels below the CRQL and were, thus, not reported. No data were qualified based on performance evaluation sample recoveries.

9. Duplicates

There were no duplicate samples included with this package.

10. Compound Identification and Quantitation

Due to the requested review level, results listed on the summary forms were used for the review. These results were not checked against the raw data for accuracy, and calculations were not verified. All positive results found below the CRQL were raised to the CRQL according to Regional policy and coded U.

11. Summary

The lab was instructed to analyze the water and soil samples for VOA analytes, and additionally the water samples for Semivolatiles analytes (package was SAS because of required quick turn-a-round). Calibration outliers were found for many compounds, resulting in data for two samples in the volatiles fraction being J-coded. Common laboratory contaminants were found in the method-blanks for volatiles, qualifying one sample. All other QC was acceptable.

ENVIRONMENTAL SERVICES ASSISTANCE TEAM - ZONE II

ICF Technology Incorporated

NSI Technology Services Corp.

The Bionetics Corp.

ESAT Region VII NSI Technology Services 25 Funston Road Kansas City, KS 66115

(913) 551-5000

TO:

Barry Evans, Data Review Task Monitor/ENSV

THRU:

Harold Brown, Ph.D., ESAT Contract Manager/ENSV

FROM:

Rebecca K. Estep, ESAT Data Reviewer/ManTech & &

THRU:

Ronald Ross, ESAT Manager/ManTech

DATE:

August 22, 1991

SUBJECT: Review of inorganic data for Cedar Falls FMGP.

TID#:

07-9103-535

ASSIGNMENT#:

923

ICF ACCT#:

302-26-535-02

ManTech S.O.#:

ManTech S.O.#: 1073-535 ESAT Document#: ESAT-VII-535-0183

These data were reviewed according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," July 1, 1988 revision.

The following comments and attached data sheets are a result of ManTech Environmental Technology, Inc.'s review of the above mentioned data from the contract laboratory.

SAS NO.:

6568G

LABORATORY:

BETZPA

CONTRACT NO.: 68-D9-0082

METHOD NO:

CS0788A

SITE:

Cedar Falls FMGP EPA ACTIVITY: DSX72
Rebecca K. Estep MATRIX: Water

Water/Soil

REVIEWER:

TOTAL METALS, CYANIDE, and MERCURY

SMO SAMPLE NO	D. EPA SAMPLE NO.	SMO SAMPLE NO	. EPA SAMPLE NO.
*MGJ001	*DSX72001	*MGJ002	*DSX72002
*MGJ003	*DSX72003	*MGJ004	*DSX72004
*MGJ 005	*DSX72005	*MGJ006	*DSX72006
*MGJ 007	*DSX72007	*MGJ008	*DSX72008
*MGJ009	*DSX72008D	*MGJ010	*DSX72101
#MGJ011	#DSX72103	#MGJ012	#DSX72104
#MGJ013	#DSX72106F	**MGJ014	**DSX72944P
##MGJ014	##DSX72940P		

^{*} Soil samples

[#] Water samples

^{##} Water sample for cyanide (CN) analyses only

^{**} Water sample for total metal analyses only

GENERAL

SAS 6568G contained 15 environmental and 14 QC water and soil samples analyzed for total metals, mercury (Hg), and cyanide (CN) at the low level concentration. This package includes one rinsate blank, one field duplicate, and two performance evaluation samples. Data review was performed at level 2.

1. TECHNICAL HOLDING TIMES and PRESERVATION

- A. Technical holding times were within quality control limit requirements for all water analyses.
- B. No technical holding times or required preservation are specified for soil samples.

2. INITIAL and CONTINUING CALIBRATION

A. Initial and continuing calibrations were within quality control limit requirements.

3. BLANKS

- A. No analytes were detected above the contract required detection limit (CRDL) in any blank.
- B. Aluminum (Al), cadmium (Cd), calcium (Ca), iron (Fe), magnesium (Mg), barium (Ba), manganese (Mn), zinc (Zn), lead (Pb) by furnace, and sodium (Na) were detected greater than the instrument detection limit (IDL) in the water blanks. Analytes greater than the instrument detection limit (IDL) but less than 5 times the highest level detected in the blank were qualified with a "U" code. Aluminum (Al) and manganese (Mn) in sample DSX72944P and lead (Pb) by furnace in sample DSX72104 were qualified with a "U" code according to the blank rules.
- C. Aluminum (Al), cadmium (Cd), calcium (Ca), chromium (Cr), iron (Fe), magnesium (Mg), barium (Ba), manganese (Mn), zinc (Zn), and sodium (Na) were detected greater than the instrument detection limit (IDL) in the soil blanks. Analytes greater than the instrument detection limit (IDL) but less than 5 times the highest level detected in the blank were qualified with a "U" code. Since these analytes in all associated samples were non-detect or greater than the 5 times rule, no data were qualified due to the blank rules.
- D. One rinsate blank on the equipment was analyzed for total metals and cyanide. No samples were qualified based on the rinsate blank.

4. ICP INTERPERENCE CHECK

A. All analytes contained in the ICP interference check sample were within quality control limit requirements. Antimony (Sb), potassium (K), and sodium (Na) were found but were not elements present in the AB ICP interference check solution. Since levels detected were below the instrument detection limit (IDL) or levels found in the samples were significantly higher, no data were qualified by the ICP interference check sample.

5. LABORATORY CONTROL SAMPLE

- A. The laboratory control sample analyzed for soil samples was within quality control limit requirements.
- B. The laboratory control sample analyzed for water samples was outside quality control limit requirements for percent recovery for silver (Ag). Silver (Ag) in sample DSX72103S was "J" coded due to the laboratory control sample rules.

6. DUPLICATES

A. All analytes were within quality control limit requirements for the water and soil samples.

7. MATRIX SPIKE

- A. All analytes in the soil matrix spike were within quality control limit requirements for percent recovery except antimony (Sb). Antimony (Sb) in sample DSX72907C was qualified with a "J" code according to the spike rules.
- B. All analytes in the water matrix spike were within quality control limit requirements for percent recovery.

8. <u>GRAPHITE_FURNACE_ATOMIC_ABSORPTION_(GFAA)_SPECTROSCOPY</u>

A. Selenium (Se) and thallium (T1) in several soil samples and selenium (Se) and lead (Pb) in several water samples had post digestion spike recoveries outside quality control limits. Lead (Pb) in sample DSX72104 would have been "J" coded due to the post digestion spike recovery, however, this qualification was overridden due to qualification by the blank rules. Lead (Pb) in sample DSX72944P was outside quality control limit requirements for the post digestion spike recovery but the sample absorbance was not less than 50% of the post digestion spike absorbance. No data were qualified due to the post digestion spike recovery rules.

B. The method of standard additions was performed for selenium (Se), lead (Pb), and arsenic (As) in several samples. The correlation coefficient for arsenic (As) in samples DSX72004 and DSX72007 was outside quality control limit requirements (less than 0.995) and was qualified with a "J" code according to the standard addition rules.

9. PERFORMANCE EVALUATION AUDIT SAMPLE

- A. The performance evaluation samples DSX72940P for cyanide (CN) and DSX72944P for total metals were analyzed together by the laboratory as sample MGJ014. For reporting purposes, cyanide (CN) in sample DSX72944P and all total metals in sample DSX72940P were reported as not analyzed.
- B. Performance evaluation audit sample DSX72944P for total metals was submitted to the laboratory for analysis with all analytes contained in the audit being identified. Arsenic (As), copper (Cu), iron (Fe), and nickel (Ni) in sample DSX72944P were detected above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL), thus, these analytes were raised to the CRDL and "U" coded.
- C. Performance evaluation audit sample DSX72940P for cyanide (CN) was submitted to the laboratory for analysis with cyanide (CN) not being detected.

10. ICP SERIAL DILUTION

- A. All analytes were within quality control limit requirements according to the ICP serial dilution rules for water samples.
- B. All analytes were within quality control limit requirements according to the ICP serial dilution rules for soil samples except for calcium (Ca), manganese (Mn), and zinc (Zn). Calcium (Ca) in all soil samples except DSX72002S and DSX72904M and manganese (Mn) and zinc (Zn) in all soil samples except for DSX72904M were "J" coded due to the ICP serial dilution rules.

11. SUMMARY

- A. Aluminum (Al) and manganese (Mn) in sample DSX72944P and lead (Pb) by furnace in sample DSX72104 were qualified with a "U" code according to the blank rules.
- B. One rinsate blank on the equipment was analyzed for total metals and cyanide. No samples were qualified based on the rinsate blank.
- C. Silver (Ag) in sample DSX72103S was "J" coded due to the laboratory control sample rules.
- D. Antimony (Sb) in sample DSX72907C was qualified with a "J" code according to the spike rules.

- E. The correlation coefficient for arsenic (As) in samples DSX72004 and DSX72007 was outside quality control limit requirements (less than 0.995) and was qualified with a "J" code according to the standard addition rules.
- F. Calcium (Ca) in all soil samples except DSX72002S and DSX72904M and manganese (Mn) and zinc (Zn) in all soil samples except for DSX72904M were "J" coded due to the ICP serial dilution rules.
- G. Several analytes in several water and soil samples were detected above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL), thus, these analytes were raised to the CRDL and "U" coded.
- H. Arsenic (As) in sample DSX72002 was reported by the laboratory as a positive result, however, when taking into account the percent solid arsenic (As) was actually detected less than the contract required detection limit (CRDL). Thus, arsenic (As) in sample DSX72002 was raised to the CRDL and "U" coded.
- I. This data package generally meets the requirements for precision, accuracy, and completeness as described in SOW for Inorganic Analysis dated July 1988, with the exceptions noted above.

ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology, Inc.

ESAT Region VII

ManTech Env. Serv. Inc.

ManTech Environmental Services, Inc.

25 Funston Road Kansas City, KS 66115

(913) 551-5000

The Bionetics Corp.

TO:

Barry Evans

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

— John Gilchrist

ESAT Data Reviewer

THRU:

Ronald A. Ross

ESAT Team Manager

DATE:

August 26, 1991

SUBJECT:

Review of volatile and semivolatile organic data for

CEDAR FALLS FMGP Site.

TID#. 07-9103-535

ASSIGNMENT# 931

ICF ACCT# 26-535-02

MANTECH S.O.# 1073-535

ESAT Document No. ESAT-VII-535-0189

These data were reviewed primarily according to the general "Laboratory Data Validation Functional Guidelines for Evaluating Organic Analyses, "February 1988 revision with changes given in the Region VII Organic Data Review Training Manual and EPA memorandums.

The following comments and attached data sheets are a result of the ESAT review, according to EPA policies, of the following data from the contract laboratory.

CASE NO.: SAS 6568G SITE: CEDAR FALLS FMGP REVIEWER: John_Gilchrist LABORATORY: <u>AATS</u> METHOD NO.:

CS0288A EPA ACTIVITY NO.: DSX72

MATRIX: SOIL

VOLATILES SOTL

SEMIVOLATILES

SOIL

EPA Sample No.	SMO Sample No.	EPA Sample No.
DSX72001	6568G017	DSX72001
DSX72002	6568G018	DSX72002
DSX72003	6568G019	DSX72003
DSX72004	6568G020	DSX72004
DSX72005	6568G021	DSX72005
DSX72006	6568G022	DSX72006
DSX72007	6568G023	DSX72007
DSX72008	6568G024	DSX72008
DSX72008D	6568G025	DSX72008D
DSX72101	6568G026	DSX72101
	DSX72001 DSX72002 DSX72003 DSX72004 DSX72005 DSX72006 DSX72007 DSX72008 DSX72008D	DSX72001 6568G017 DSX72002 6568G018 DSX72003 6568G019 DSX72004 6568G020 DSX72005 6568G021 DSX72006 6568G022 DSX72007 6568G023 DSX72008 6568G024 DSX72008D 6568G025

GENERAL

This data review assignment covers 10 SOIL samples analyzed for VOLATILES and 10 SOIL samples analyzed for SEMIVOLATILES for SAS number 6568G. There were no field blanks, two field duplicates and no performance evaluation samples included with this assignment. Data review was performed at level two.

1. Holding Times and Preservation

Volatiles: No technical holding times are specified for soil samples.

Semivolatiles: No technical holding times are specified for holding times from collection to extraction for soil samples. Technical holding times were observed for subsequent analysis of extracts.

2. GC/MS Tuning

Volatiles: All relative ion abundances were within the established control limits.

Semivolatiles: All relative ion abundances were within the established control limits.

3. Initial and Continuing Calibration

Volatiles: All compounds met the criteria of 0.05 for response factors for both initial and continuing calibrations. All compounds were within control limits for %RSD in the initial calibrations. Several compounds were outside the 25% criteria for % difference in the continuing calibrations. Acetone was J coded in sample DSX72001 due to these results.

Semivolatiles: All compounds met the criteria of 0.05 for response factors for both initial and continuing calibrations. Several compounds were outside the control limits for %RSD and % difference criteria for initial and continuing calibrations. Benzo(b) Fluoranthene was J coded in samples DSX72006, DSX72007, and DSX72008 due to these results.

4. Internal Standard Response

Volatiles: Internal standards 1,4-Difluorobenzene and Chlorobenzene were outside control limits in the initial analysis of DSX72008D. All internal standards were within control limits on the re-analysis of this sample. No data were qualified due to this occurrence.

Semivolatiles: All internal standard criteria were within control limits.

5. Blanks

Volatiles: Acetone, 2-Hexanone, and Chloroform were detected in the method blanks at levels below the CRDL. Acetone was U coded in sample DSX72008D, due to this occurrence.

Semivolatiles: No contaminants were found in the method blanks.

6. Surrogate Recovery

Volatiles: Surrogate compound recoveries were out of control limits for sample DSX72008D, both for initial and re-analysis. Toluene-d8 was outside of contract required QC limits on the initial analysis. 1,2-Dichloroethane-d4 was outside control limits on the re-analysis of DSX72008D. As a result, Methylene Chloride and Tetrachloroethene were qualified with a J code in this sample.

Semivolatiles: Surrogate compound recoveries for 2,4,6-Tribromophenol were out of control limits for samples DSX72002, DSX72003, DSX72004, and DSX74005. No data were qualified by this result.

7. Matrix Spike/Matrix Spike Duplicate Recovery

Volatiles: Matrix spike/Matrix spike values were all within the control ranges.

Semivolatiles: Matrix spike/Matrix spike values were all within the control ranges.

8. Performance Evaluation Sample

There were no performance evaluation samples included with this sample package.

9. Compound Identification and Quantitation

Due to the requested review level, results listed on the summary forms were used for the review. These results were not checked against the raw data for accuracy, and calculations were not verified.

10. Summary

Volatiles: Calibration outliers resulted in qualification of data for one compound in one sample. Blank contamination caused qualification in one sample. Surrogate outliers caused J coding on one sample.

Semivolatiles: Calibration outliers resulted in data qualification in three samples. Surrogate outliers did not result in any data qualification.

FOR ACTIVITY: DSX72

SPFD

09/12/91 17:30:19

ALL REAL SAMPLES AND FIELD Q.C.

* FINAL REPORT

FY: 91 ACTIVITY: DSX72

DESCRIPTION: CEDAR FALLS FMGP

LOCATION: CEDAR FALLS

IOWA

STATUS: ACTIVE

TYPE: SAMPLING - CONTRACT LAB ANALYSIS

PROJECT:

LABO DUE DATE IS 9/14/91. REPORT DUE DATE IS 10/13/91.

INSPECTION DATE: 7/30/91 ALL SAMPLES RECEIVED DATE: 07/31/91

ALL DATA APPROVED BY LABO DATE: 09/12/91

FINAL REPORT TRANSMITTED DATE: 09/12/91

EXPECTED LABO TURNAROUND TIME IS 45 DAYS

EXPECTED REPORT TURNAROUND TIME IS 75 DAYS

ACTUAL LABO TURNAROUND TIME IS 43 DAYS

ACTUAL REPORT TURNAROUND TIME IS 44 DAYS

SAMP. NO.	QCC	M			MPLE ATUS	# CONT.	CITY	STATE	AIRS/ STORET LOC NO	BEG. DATE	BEG. Time	END. DATÉ	END. Time
001 002 003 004 005 006 007		ทกกก กกก ก	CEDAR FALLS CEDAR FALLS CEDAR FALLS CEDAR FALLS CEDAR FALLS CEDAR FALLS	FMGP-LOCATION 1S FMGP-LOCATION 1SS FMGP-LOCATION 3S FMGP-LOCATION 3SS FMGP-LOCATION 4S FMGP-LOCATION 4SS FMGP-LOCATION 2S FMGP-LOCATION 2S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 CEDAR 1 CEDAR 1 CEDAR 1 CEDAR 1 CEDAR 1 CEDAR 1 CEDAR	FALLS FALLS FALLS FALLS FALLS	IOWA IOWA IOWA IOWA IOWA IOWA IOWA		07/30/91 07/29/91 07/30/91 07/30/91 07/30/91 07/30/91	09:30 09:50 11:25 11:40 12:35 12:55 15:15		; ; ; ;
008 008 010 101 103 104 105 106	D F		CEDAR FALLS CEDAR FALLS CEDAR FALLS CEDAR FALLS CEDAR FALLS CEDAR FALLS	FMGP-LOCATION 2SS FMGP-TRIP BLANK FMGP-BACKGROUND LOCATION FMGP-ONSITE WELL #3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 CEDAR 1 CEDAR 5 CEDAR 1 CEDAR 5 CEDAR	FALLS FALLS FALLS FALLS FALLS	IOWA IOWA IOWA IOWA IOWA IOWA IOWA	· · · · · · · · · · · · · · · · · · ·	07/30/91 07/30/91 07/30/91 07/30/91 07/30/91 07/30/91 07/30/91	15:20 15:20 16:10 10:45 11:30 15:45		

```
SAMP. NO. = SAMPLE IDENTIFICATION NUMBER
QCC = QUALITY CONTROL SAMPLE/AUDIT CODE
M = MEDIA OF SAMPLE (A=AIR, T=TISSUE, H=HAZARDOUS
MATERIAL, S=SEDIMENT/SOIL, W=WATER)
AIRS/STORET LOC. NO. = A SAMPLING SITE LOCATION
IDENTIFICATION NUMBER
BEG. DATE = THE DATE SAMPLING WAS STARTED
BEG. TIME = THE TIME SAMPLING WAS STARTED
END. DATE = THE DATE SAMPLING WAS ENDED
END. TIME = THE TIME SAMPLING WAS STOPPED
A = RESERVED
B = RESERVED
B = RESERVED
PES = PESTICIDES BY CONTRACT
B = RESERVED
PES = PESTICIDES BY CONTRACT
= DIOXINS/FURANS BY EPA
E = EXPLOSIVES BY CONTRACT
FLD = FIELD MEASUREMENTS BY EPA
G = MINERALS & DISSOLVED MATERIALS BY EPA
HER = HERBICIDES BY EPA
I = ION CHROMATOGRAPHY ANALYSES BY EPA
MC = METALS BY CONTRACT
BNC = BASE NEUTRALS BY CONTRACT
L = FISH PHYSICAL DATA BY EPA
MFT = METALS BY FPA
MET = METALS BY EPA

N = FISH TISSUE PARAMETERS BY EPA

VC = VOLATILES BY CONTRACT

P = PESTICIDES BY EPA

Q = FLASH POINT ANALYSES BY EPA
              = RESERVED
            = SEMIVOLATILE BY EPA
= CYANIDE PHENOL BY EPA
              = RESERVED
 VOA = VOLATILE ORGANICS BY EPA
HC = HERBICIDES BY CONTRACT
              = RESERVED
              = RESERVED
  TRK = ACTIVITY TRACKING PARAMETERS BY EPA
 STORET DETECTION IDENTIFIERS
BLANK = NO REMARKS
J = DATA REPORTED BUT NOT VALID BY APPROVED QC PROCEDURES

I = INVALID SAMPLE/DATA - VALUE NOT REPORTED

U = LESS THAN (MEASUREMENT DETECTION LIMIT)

M = DETECTED BUT BELOW THE LEVEL FOR ACCURATE QUANTIFICATION
  O = PARAMETER NOT ANALYZED
 CONTRACTOR/ IN HOUSE / FIELD MEDIA GROUPS
FIELD = * * * = AF,HF,SF,TF,WF,ZZ
CONTRACTOR = * = HA,HC,HJ,HK,HO,SC,SJ,SK,SO,SW,TC,TJ,
TK,TO,TW,MA,WC,WE,WJ,WK,WO,WW
  IN HOUSE
                                             * = ALL OTHERS
```

```
QUALITY CONTROL AUDIT CODES

A = TRUE VALUE FOR CALIBRATION STANDARD

B = CONCENTRATION RESULTING FROM DUPLICATE LAB SPIKE

C = MEASURED VALUE FOR CALIBRATION STANDARD

D = MEASURED VALUE FOR FIELD DUPLICATE

F = MEASURED VALUE FOR METHOD STANDARD

H = TRUE VALUE FOR METHOD STANDARD

K = CONCENTRATION RESULTING FROM DUPLICATE FIELD SPIKE

L = MEASURED VALUE FOR LAB DUPLICATE

M = MEASURED VALUE FOR LAB BLANK

N = MEASURED VALUE FOR LAB BLANK

N = MEASURED VALUE FOR DUPLICATE FIELD SPIKE

P = MEASURED VALUE FOR PERFORMANCE STANDARD

R = CONCENTRATION RESULTING FROM LAB SPIKE

T = TRUE VALUE OF PERFORMANCE STANDARD

W = MEASURED VALUE FOR LAB SPIKE

T = TRUE VALUE OF PERFORMANCE STANDARD

W = MEASURED VALUE FOR DUPLICATE LAB SPIKE

Y = MEASURED VALUE FOR DUPLICATE LAB SPIKE
                      MEDIA CODES
                     A = AIR
                      T = BIOLOGICAL (PLANT & ANIMAL) TISSUE
                     H = HAZARDOUS MATERIALS/MAN MADE PRODUCTS
                     W = WATER
                      UNITS
                                 = NOT APPLICABLE
= PICOGRAMS (1 X 10-12 GRAMS)
= NANOGRAMS (1 X 10-9 GRAMS)
= MICROGRAMS (1 X 10-6 GRAMS)
= MILLIGRAMS (1 X 10-3 GRAMS)
                      NA
                     M3 = METER CUBED
MPH = MILES PER HOUR
                      SCM = STANDARD (1 ATM, 25 C) CUBIC METER
                                    = KILOGRAM
                      KG
                                      = LITER
                                      = CENTIGRADE DEGREES
                     SU = STANDARD (PH) UNITS
                                      = NUMBER
                                   = POUNDS
LB = POUNDS
IN = INCHES
M/F = MALE/FEMALE:
M2 = SQUARE METER
I.D. = SPECIES IDENTIFICATION
GPM = GALLONS PER MINUTE
CFS = CUBIC FEET PER SECOND
MGD = MILLION GALLONS PER DAY
1000G= FLOW, 1000 GALLONS PER COMPOSITE
UMHOS= CONDUCTIVITY UNITS (1/OHMS)
NTH = TURBIDITY UNITS
                     NTU = TURBIDITY UNITS
PC/L = PICO (1 X 10-12) CURRIES PER LITER
                    MV = MILLIVOLT
SQ FT= SQUARE FEET
P/CM2= PICOGRAMS PER SQ. CENTIMETER
```

U/CM2= MICROGRAMS PER SQ. CENTIMETER

	COMPOUND	UNITS	001	002	003	004	005
SMO1 SILVER	BY ICAP	MG/KG	2.1 U	: 2.5 U	:	: :2.3 U	2.5 U
SMO2 ALUMINUM, TOTAL	., BY ICAP	MG/KG	3000	: 8300	: 4300	: 7000	6900
SMO3 ARSENIC, TOTAL,	BY ICAP	MG/KG	2.1 U	.2.5 U	2.3 U	:3.0 J	10
SMO4 BARIUM, TOTAL,	BY ICAP	MG/KG	42 U	: 84	47	: 83	100
SMO5 BERYLLIUM, TOTA	L, BY ICAP	MG/KG	1.0 U	1.2 U	1.1 U	1.1 U	1.2 U
SMO6 CADMIUM, TOTAL,	BY ICAP	:MG/KG	1.0 U	1.2 U	1.1 U	1.1 U	1.2 U
SMO7 COBALT, TOTAL,	BY ICAP	MG/KG	10 U	12 U	11 U	11 U	12 U
SMO8 CHROMIUM, TOTAL	., BY ICAP	MG/KG	6.7	: 15	10	: 12	11
SMO9 COPPER, TOTAL,	BY ICAP	MG/KG	5.2 ປ	6.3	7.9	7.0	9.8
SM10 IRON	BY ICAP	MG/KG	8100	14000	9500	14000	28000
SM11 MANGANESE	BY ICAP	MG/KG	170 J	490 J	200 J	280 J	51 J
SM12 MOLYBDENUM	BY ICAP	MG/KG	NA O	NA O	NA O	NA O	NA O
SM13 NICKEL	BY ICAP	MG/KG	8.4 U	13	9.7	12	9.9 U
SM14 LEAD	BY ICAP	MG/KG	2.6	9.0	21	12	69
SM15 ANTIMONY, TOTAL	. BY ICAP	MG/KG	13 U	15 U	14 U	14 U	: 15 U
SM16 SELENIUM	BY ICAP	MG/KG	1.0 U	1.2 U	1.1 U	1.1 U	1.4
SM17 TITANIUM	BY ICAP	MG/KG	NA O	NA O	NA O	NA O	NA O
SM18 THALLIUM	BY ICAP	MG/KG	2.1 U	2.5 U	2.3 U	2.3 U	2.5 U
SM19 VANADIUM	BY ICAP	MG/KG	10 U	22	12	18	25
SM20 ZINC	BY ICAP	MG/KG	14 J	28 J	33 J	:44 J	33 J
SM21 CALCIUM, TOTAL.	BY ICAP	MG/KG	2100 J	4500 J	8700 J	14000 J	:5500 J
SM22 MAGNESIUM	BY ICAP	MG/KG	1000 ປ	:1800	3000	4100	: 1300
SM23 SODIUM	BY ICAP	:MG/KG	1000 ປ	1200 U	1100 U	1100 U	1200 U
SM24 POTASSIUM	BY ICAP	MG/KG	1000 U	1200 U	1100 U	1100 U	1200 U
SM34 MERCURY	BY COLD VAPOR AA	MG/KG	O.10 U	0.12 U	0.11 U	0.11 U	0.12 U
SSO1 PHENOL		UG/KG	690 U	730 U	1400 U	760 U	770 U

COMPOUND	UNITS		001	002		003	004	005	
SSO2 CARBAZOLE	UG/KG	: : NA	0.	: : NA	<u></u>	:	- :	: D:NA	0
SSO3 ETHER, BIS(2-CHLOROETHYL), BY GC/MS	UG/KG	690	บ	730	U	1400 U	: 760 U	770	U
SSO4 2-CHLOROPHENOL	UG/KG	690	U	730	U	: 1400 U	: 760 U	J : 770	Ü
SSO5 1,3-DICHLOROBENZENE	UG/KG	690	U	730	U	: 1400 U	: 760 U	J 770	
SSO6 1,4-DICHLOROBENZENE	UG/KG	690	U	730	U	:1400 U	: 760	J : 770	U
SSO7 BENZYL ALCOHOL	UG/KG	690	U	730	U	: 1400 U	: 760	J : 770	U
SSO8 1,2-DICHLOROBENZENE	UG/KG	690	U	730	U	:1400 U	: 760	J : 770	U
SSO9 2-METHYLPHENOL (O-CRESOL)	UG/KG	690	U	730	U	:1400 U	: 760	J : 770	U
SS10 WTHER, BIS(2-CHLOROISOPROPYL), BY GC/MS	UG/KG	690	V	730	U	:1400 U	. 760 l	J : 770	U
SS11 4-METHYLPHENOL (P-CRESOL)	UG/KG	690	υ	: 730	U	1400 U	760	J : 770	U
SS12 N-NITROSO-DIPROPYLAMINE	UG/KG	690	U	730	U	:1400 U	760	J 770	υ
SS13 HEXACHLOROETHANE	UG/KG	690	U	730	U	1400 U	760	J : 770	U
SS14 NITROBENZENE	UG/KG	690	U	730	U	1400 U	760	J 770	υ
SS15 ISOPHORONE	UG/KG	690	U	730	U	1400 U	760	J 770	U
SS16 2-NITROPHENOL	UG/KG	690	U	730	υ	1400 U	: 760	J : 770	U
SS17 2,4-DIMETHYLPHENOL	UG/KG	690	U	: 730	U	1400 U	760	J : 770	U
SS18 BENZOIC ACID, BY GC/MS	UG/KG	3300	U	3600	U	7000 L	3700	3700	U
SS19 METHANE, BIS(2-CHLOROETHYOXY), BY GC/MS	UG/KG	690	V	730	U	1400 U	: 760	U : 770	U
SS20 2,4-DICHLOROPHENOL	UG/KG	690	Ü	730	U	1400, U	760	J 770	U
SS21 1,2,4-TRICHLOROBENZENE	UG/KG	690	U	730	U	:1400 L	: 760	U 770	U
SS22 NAPHTHALENE	UG/KG	690	U	730	υ	:1400 U	: 760	U : 770	U
SS23 4-CHLOROANILINE	UG/KG	690	U	730	U	:1400 U	: 760	J : 770	U
SS24 HEXACHLOROBUTADIENE, BY GC/MS	UG/KG	690	U	730	U	:1400 U	: 760	U : 770	U
SS25 4-CHLORO-3-METHYLPHENOL	UG/KG	690	U	730	υ	:1400 L	: 760	U : 770	U
SS26 2-METHYLNAPHTHALENE	UG/KG	690	U	730	U	1400 U	: 760	J 770	U
SS27 HEXACHLOROCYCLOPENTADIENE, BY GC/MS	UG/KG	690	U	730	U	:1400 L	760	770	U

COMPOUND	UNITS	001	002		003	004	005
SS28 2.4.6-TRICHLOROPHENOL	UG/KG	: 690 ປ	: : 730	υ	: : 1400 U	760 U	: : 770 U :
SS29 2.4.5-TRICHLOROPHENOL	UG/KG	3300 U	: 3600	U	: 7000 U	:3700 U	3700 U
SS30 2-CHLORONAPHTHALENE	UG/KG	690 U	: 730	U	: 1400 U	760 U	770 U
SS31 2-NITROANILINE	UG/KG	3300 U	: 3600	U	: 7000 U	:3700 U	3700 U
SS32 PHTHALATE, DIMETHYL, BY GC/MS	UG/KG	690 U	: 730	U	: 1400 U	:760 U	770 U
SS33 ACENAPHTHYLENE, BY GC/MS	UG/KG	690 U	: 730	U	: 4900	1400	770 U
SS34 3-NITROANILINE	UG/KG	3300 U	: 3600	U	7000 U	:3700 U	3700 U
SS35 ACENAPHTHENE, BY GC/MS	UG/KG	690 U	730	U	1400 U	:760 U	. 770 U
SS36 2,4-DINITROPHENOL	UG/KG	3300 U	: 3600	U	7000 U	3700 U	3700 U
SS37 4-NITROPHENOL	UG/KG	:3300 U	: 3600	U	7000 U	3700 U	:3700 U :
SS38 DIBENZOFURAN	: UG/KG	690 U	730	U	: 1400 U	760 U	770 U
SS39 2,4-DINITROTOLUENE	UG/KG	690 U	730	U	1400 U	760 U	770 U
SS40 2,6-DINITROTOLUENE	UG/KG	690 U	730	U	1400 U	760 U	770 U
SS41 PHTHALATE, DIETHYL, BY GC/MS	UG/KG	690 U	730	U	1400 U	760 U	770 U
SS42 4-CHLOROPHENYL PHENYL ETHER	UG/KG	690 U	730	U	1400 U	760 U	.770 U
SS43 FLUORENE,GC/MS	UG/KG	690 U	730	U	:1400 U	760 U	770 U
SS44 4-NITROANILINE	UG/KG	3300 U	: 3600	U	: 7000 U	3700 U	3700 U
SS45 4,6-DINITRO-2-METHYLPHENOL	UG/KG	3300 U	: 3600	U	7000 U	:3700 U	:3700 U
SS46 N-NITROSODIPHENYLAMINE	:UG/KG	:690 U	730	U	1400 U	760 U	770 U
SS47 4-BROMOPHENYL PHENYL ETHER	:UG/KG	:690 U	730	U	1400 U	: 760 U	770 U
SS48 HEXACHLOROBENZENE, BY GC/MS	UG/KG	:690 U	730	U	:1400 U	: 760 U	770 U
SS49 PENTACHLOROPHENOL	UG/KG	3300 U	: 3600	U	: 7000 U	:3700 U	3700 U
SS50 PHENANTHRENE	UG/KG	:690 U	730	U	2000	: 760 U	770 U
SS51 ANTHRACENE, BY GC/MS	UG/KG	690 U	730	U	: 1800	760 U	770 U
SS52 PHTHALATE, DI-N-BUTYL-, BY GC/MS	UG/KG	690 U	730	U	1400 U	760 U	770 U
SS53 FLUORANTHENE, BY GC/MS	UG/KG	690 U	730	U	12000	3500	770 U
	:		- <u>;</u>		:	· :	:

م بر ارساده م	COMPOUND	UNITS		001		002		003	00)4		005.	
	S\$54 PYRENE	: u6/k6	690	. ijt	730	υ	16000		5600		770		: ປ
	TO9 CYANIDE, TOTAL	:MG/KG:	5.2	: - · - · - · · · · · · · · · · · · · ·	:6.2		5.7	u	.5.7	U	6.2	\$ \$	U
ा । च् ब्	SVOG CHLOROMETHANE, BY GC/MS	:UG/KG	10	U	11	U	11	Ū	.11	U	11		υ
	SVQ4 BROMOMETHANE BY GC/MS	UG/KG	10	Ü	11	U	11	U	11	U	11		U
•	SVO5 VINYL CHLORIDE	UG/KG	10	U	11	U	: 11	V	11	U	11	,	U
5	SVO6 CHLOROETHANE, BY GC/MS	UG/KG	10	U	11	U	11	υ	11	U	:11		U
9	SVO7 METHYLENE CHLORIDE	UG/KG	14		5.3	U	15		15		5.6	12	U
5	VOS 1,1-DICHLOROETHYLENE	UG/KG	5.2	U	5.3	U	5.3	U	5.7	U	5.6		U
5	5VO9 1.1-DICHLOROFTHANF	ug/kg	5.2	U.	5.3	U	.5.3	U	5.7	Ŋ	5 6		U
: · · •	SV10 TRANS-1, 2-DICHLOROETHYLENE	UG/KG	NA	0	.NA	O	NA.	0	NΔ	0	: NA		0
	svipe cheoroforme by ce/ms	.UG/KG	5.2	U	5.3	Ú	5.3	V a la l	5.7	Ù	:5.6		Ü
3	5V12 1,2-DICHLOROETHANE	UG/KG	5.2	U	5.3	Ū	5.3	<u>.</u> U	:5.7	U	.5.6	44	U
	SV13 1,1,1-TRICHLOROETHANE	:UG/KG	5.2	U	5.3	U	5.3	U	:5.7	U	:12		

U :5.3

ACTIVITY: 1-DSX72

U .5.3

U 5 7

U.:5.6

ANALYSIS REQUEST DETAIL REPORT

:UG/KG:5.2

SV14 CARBON TETRACHLORIDE. BY GC/MS

ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: 1-DSX72

VALIDATED DATA

COMPOUND	UNITS	001	002		003		004		005	
SV15 BROMODICHLOROMETHANE BY GC/MS	UG/KG:5.2	9	5.3	บ	5.3	บ	: :5.7	U	:5.6	:
SV16 1.2-DICHLOROPROPANE	UG/KG:5.2	υ	5.3	Ü	5.3	U	:5.7	U	5.6	U
SV17 BENZENE, BY GC/MS	UG/KG: 5.2	U .	5.3	U	5.3	U	5.7	U	5.6	U
SV18 TRANS-1,3-DICHLOROPROPENE	:UG/KG:5.2	U	5.3	U	:5.3	U	:5.7	U	5.6	u
SV19 TRICHLOROETHYLENE	: UG/KG: 5.2	U	5.3	U	5.3	U	5.7	U	5.6	U
SV20 DICHLOROPROPENE. CIS-1,3-, BY GC/MS	:UG/KG:5.2	U	5.3	U	5.3	U	5.7	U	5.6	บ
SV21 DIBROMOCHLOROMETHANE, BY GC/MS	: UG/KG: 5.2	U	5.3	U	5.3	U	5.7	U	5.6	U
SV22 1,1,2-TRICHLOROETHANE	.UG/KG:5.2	U	5.3	U	:5.3	U	5.7	υ	:5.6	บ :
SV24 BROMOFORM, BY GC/MS	.UG/KG:5.2	U	5.3	U	:5.3	U	:5.7	Ú	5.6	U
SV25 1.1.2.2-TETRACHLOROETHENE	:UG/KG:12		5.3	U	5.3	U	5.7	, U	15	
SV26 TOLUENE	UG/KG:5.2	U	5.3	U	5.3	U	5.7	Ü	5.6	/១ ' ប ់

\$HASP170 R456.PR1 BACKSPACED

	COMPOUND	UNITS	001		002		003		004	005	
and The state of the state of t	SS54 PYRENE	UG/KG	690	- υ	730	บ	: 16000		5600	770	
	SS55 PHTHALATE, BUTYL BENZYL	:UG/KG	690	υ	730	U	1400	U	: 76 0	770	
	SS56 3,3'-DICHLOROBENZIDINE	:UG/KG	1400	U	: 1500	U	2900	U	: 1500 L	1 :1500	<u>-</u>
	SS57 ANTRACENE, BENZO(A), BY GC/MS	UG/KG	690	U	: 730	Ų	14000		3800	770	ι,
	SS58 PHTHALATE, BIS(2-ETHYLHEXYL), BY GC/MS	UG/KG	690	U	: 730	U	1400	U	760 U	770	u u
	SS59 CHRYSENE, BY GC/MS	UG/KG	690	U	730	U	: 11000		3300	770	
	SS60 PHTHALATE, DI-N-OCTYL-, BY GC/MS	UG/KG	690	U	: 730	V	: 1400	U	760 l	770	·
	SS61 FLUORANTHENE, BENZO(B), BY GC/MS	:UG/KG	690	U	730	U	:21000		: 5900	770	ι
	SS62 FLUORANTHENE, BENZO(K), BY GC/MS	UG/KG	690	U	730	U	: 1400	U	760	770	. (
and the state of t	SS63 PYRENE. BENZO(A). BY GC/MS	:UG/KG	690	υ	730	υ	9200		3800	770	 L
	SS64 INDENO(1,2,3-CD)PYRENE	-ug/kg	690	U	: 730	U	4800		:	770	
in part in Surriginal dia metabolih tida mpi	SS65 ANTHRACENE, DIBENZO(A,H), BY GC/MS	:UG/KG	690	U	730	U	1500		760	770	i
and the second	SS66 PERYLENE, BENZO(G,H,I), BY GC/MS	:UG/KG	690	U	: 730	Ü	: 4800		1200	:770	L
	STO9 CYANIDE, TOTAL	MG/KG	5.2	U	6.2	U	:5.7	υ	5.7 L	6.2	·
	SVO3 CHLOROMETHANE, BY GC/MS	:UG/KG	10	U	11	U	11	U	: 11 \(\)	1 . 11	l
* *	SVO4 BROMOMETHANE, BY GC/MS	UG/KG	: 10	U	:11	U	: 11	U	11) : 11	
	SVO5 VINYL CHLORIDE	:UG/KG	10	U	11	Ü	. 1 1	U	: 11	. : J :11	
	SVO6 CHLOROETHANE. BY GC/MS	:UG/KG	10	U	11	U	: 11.	U	11 () :11	 L
	SVO7 METHYLENE CHLORIDE	.UG/KG	: 14		5.3	U	: 15		. 15	5.6	l
	SVOR 1.1-DICHLOROETHYLENE	: UG/Kb	5.2	U	5.3	U	:5.3		:5.7	.5.6	t
	SVO9 1.1-DICHLOROETHANE	ugyke	5.2	U	:5.3	U	:5.3	U	.5.7	:5.6	
	SV10 TRANS-1,2-DICHLOROETHYLENE	:UG/KG	:	0	: NA	0	: NA	0	: NA () :NA	
	SV11 CHLOROFORM, BY GC/MS	:UG/KG	5.2	U	5.3	U	:5.3	U	:5.7 l	5.6	
	SV12 1,2-DICHLOROETHANE	:UG/KG	5.2	U	5.3	U	5.3	U	: 5.7	5.6	
	SV13 1,1,1-TRICHLOROETHANE	:UG/KG	: : 5 . 2	U	5.3	U	:5.3	U U	:5.7 L	J : 12	
	SV14 CARBON TETRACHLORIDE, BY GC/MS	:UG/KG	: : 5 . 2		:5.3		:5.3	U	: : 5 . 7	-: J:5.6	

COMPOUND	UNITS		001	002		003		004		005	
SV15 BROMODICHLOROMETHANE. BY GC/MS	UG/KG	5.2	U	:5.3	U	5.3	U	5.7	U	5.6	. U :
SV16 1.2-DICHLOROPROPANE	UG/KG	5.2	U	5.3	U	5.3	U	5.7	U	5.6	U :
SV17 BENZENE, BY GC/MS	UG/KG	5.2	V	5.3	U	5.3	U	:5.7	U	5.6	: U :
SV18 TRANS-1,3-DICHLOROPROPENE	UG/KG	5.2	U	5.3	บ	5.3	U	5.7	U	:5.6	
SV19 TRICHLOROETHYLENE	UG/KG	5.2	U	5.3	U	:5.3	U	:5.7	U	:5.6	U :
SV20 DICHLOROPROPENE, CIS-1,3-, BY GC/MS	UG/KG	5.2	U	5.3	U	5.3	บ	5.7	U	:5.6	U :
SV21 DIBROMOCHLOROMETHANE, BY GC/MS	UG/KG	5.2	U	5.3	U	5.3	U	5.7	U	:5.6	U :
SV22 1,1,2-TRICHLOROETHANE	UG/KG	5.2	U	5.3	U	5.3	U	5.7	U	5.6	U :
SV24 BROMOFORM, BY GC/MS	UG/KG	5.2	V	5.3	U	:5.3	U	:5.7	U	5.6	U
SV25 1.1.2.2-TETRACHLOROETHENE	:UG/KG	12		5.3	υ	5.3	Ų	5.7	U	: 15.	
SV26 TOLUENE	UG/KG	5.2	U	5.3	บ	5.3		5.7	u	5.6	: u
SV27 1,1,2,2-TETRACHLOROETHANE	UG/KG	5.2	U	5.3	U	5.3	ı)	5.7	U	:5.6	U
SV28 CHLOROBENZENE, BY GC/MS	UG/KG	5.2	U	5.3	Ü	:5.3	Ų	5.7	U	:5.6	υ:
SV29 ETHYL BENZENE, BY GC/MS	UG/KG	5.2	U	5.3	U	5.3	U	5.7	U	:5.6	U :
SV30 ACETONE, BY GC/MS	UG/KG	49	J	12	บ	: 11	υ	11	· U	. 11	U
SV31 CARBON DISULFIDE, BY GC/MS	: UG/KG	5.2	U	5.3	U	5.3	U	5.7	U	:5.6	 :
SV32 2-BUTANONE	UG/KG	: 	10 U	11	U	11	U	11	IJ	11	<u> </u>
SV33 VINYL ACETATE	UG/KG	 : :	10 U	11	U	11	()	11	U	11	U :
SV34 2-HEXANONE	UG/KG	 : :	10 U	11	U	: 11	Ų	11	บ	11	Ų.
SV35 4-METHYL-2-PENTANONE	UG/KG	: :	10 U	11	U	·	U	11	U	11	U :
SV36 STYRENE	UG/KG	:	5.2 U	5.3	U	5.3	U	5.7	Ü	5.6	U
SV37 XYLENES, TOTAL	:UG/KG	 : :	5.2 U	5.3	U	5.3	บ	5.7	υ	5.6	U :
ZZO1 SAMPLE NUMBER	: NA	001		:002		:003		004		:005	:
ZZO2 ACTIVITY CODE	NA	DSX7	2	DSX72		:DSX72		DSX72		:DSX72	:

		COMPOUND	UNITS	006		007	008		0800	010F
	SMO1 SILVER	BY ICAP	MG/KG	2.6	υ :	2.3 U	2.7	 υ	2.6 U	
and the train	SMO2 ALUMINUM, TO	TAL, BY ICAP	MG/KG	12000	:	10000	15000		: 14000	
	SMO3 ARSENIC, TOTA	AL, BY ICAP	MG/KG	5.7	:	4.8 J	4.2		:4.9	
	SMO4 BARIUM, TOTAL	, BY ICAP	MG/KG	190	:	110	170		: 220	
	SMOS BERYLLIUM, TO	OTAL, BY ICAP	MG/KG	1.3	U :	1.2 U	1.4	U	1.3 U	
	SMO6 CADMIUM, TOTA	AL, BY ICAP	MG/KG	1.3	U	1.2 ປ	1.4	U	:1.3 U	
	SMO7 COBALT, TOTAL	, BY ICAP	MG/KG	13	U	12 ປ	: 14	Ü	: 13 U	
	SMO8 CHROMIUM, TO	TAL, BY ICAP	MG/KG	18	:	14	20		: 18	
	SMO9 COPPER, TOTAL	, BY ICAP	MG/KG	19	:	7.8	12	υ	: 11	
	SM10 IRON	BY ICAP	MG/KG	41000	:	14000	20000		21000	
	SM11 MANGANESE	BY ICAP	MG/KG	95	J :	680 J	:1200	J	.1400 J	·
gan mengan banan gan se	SM12 MOLYBDENUM	BY ICAP	MG/KG	NA	0	NA O	: NA	0	NA O	
	SM13 NICKEL	BY ICAP	MG/KG	11	:	13	18		17	
	SM14 LEAD	BY ICAP	MG/KG	29	:	13	13		: 18	
	SM15 ANTIMONY, TO	TAL, BY ICAP	MG/KG	16	U	: 14 U	16	U	:15 U	:
	SM16 SELENIUM	BY ICAP	MG/KG	1.3	U	1.2 U	1.4	U	1.3 U	·
	SM17 TITANIUM	BY 1CAP	MG/KG	: NA	0	NA O	: : NA	0	: NA O	· · · · · · · · · · · · · · · · · · ·
	SM18 THALLIUM	BY ICAP	:MG/KG	: 2 · 6	U	2.3 U	:2.7	U	2.6 U	
	SM19 VANADIUM	BY ICAP	: MG/KG	30	:	24	: 34		33	
	SM20 ZINC	BY ICAP	:MG/KG	: 52	J	40 J	: 56	J	:64 J	
	SM21 CALCIUM, TOTA	AL BY ICAP	MG/K.G	6200	J	: 3900 J	:5700	J	7000 J	:
	SM22 MAGNESIUM	BY ICAP	MG/KG	1800	:	1700	2800		2900	
•	SM23 SODIUM	BY ICAP	MG/KG	1300	U	1200 ປ	1400	υ	1300 U	
	SM24 POTASSIUM	BY ICAP	MG/KG	1500	U	1200 U	:1400	U	: 1300 U	
	SM34 MERCURY	BY COLD VAPOR AA	MG/KG	0.13	U	0.12 U	0.14	U	0.13 U	
	SSO1 PHENOL		UG/KG	870	U	760 U	: 800	U	810 U	

COMPOUND	UNITS	006	007		800	008D	010F
SSO2 CARBAZOLE	UG/KG	NA O	: : NA	0	: NA O	: NA O	:
SSO3 ETHER, BIS(2-CHLOROETHYL), BY GC/MS	UG/KG	870 U	: 760	U	800 U	:810 U	
SSO4 2-CHLOROPHENOL	UG/KG	870 U	760	U	800 U	:810 U	
SSO5 1,3-DICHLOROBENZENE	UG/KG	870 U	: 760	U	800 U	:810 U	
SSO6 1,4-DICHLOROBENZENE	UG/KG	870 U	760	U	800 U	810 U	
SSO7 BENZYL ALCOHOL	UG/KG	870 U	760	U	800 U	810 U	
SSO8 1.2-DICHLOROBENZENE	UG/KG	870 U	760	U	800 U	810 U	
SSO9 2-METHYLPHENOL (O-CRESOL)	UG/KG	870 U	760	U	800 U	810 U	
SS10 WTHER, BIS(2-CHLOROISOPROPYL), BY GC/MS	UG/KG	870 U	760	U	800 U	810 U	
S\$11 4-METHYLPHENOL (P-CRESOL)	UG/KG	870 U	760	U	800 U	810 U	
SS12 N-NITROSO-DIPROPYLAMINE	UG/KG	870 ป	760	U	800 U	810 U	
SS13 HEXACHLOROETHANE	UG/KG	870 U	760	U	800 U	810 U	
SS14 NITROBENZENE	UG/KG	870 U	760	U	800 U	810 U	
SS15 ISOPHORONE	UG/KG	870 U	760	U	800 U	810 U	
SS16 2-NITROPHENOL	UG/KG	870 U	: 760	U	800 U	810 U	:
SS17 2.4-DIMETHYLPHENOL	UG/KG	870 U	760	U	800 U	810 U	
SS18 BENZOIC ACTD, BY GC/MS	UG/KG	4200 U	3700	U	.3900 Ü	4000 U	
SS19 METHANE, BIS(2-CHLOROETHYOXY), BY GC/MS	UG/KG	870 U	760	U	800 U	810 U	
SS20 2.4-DICHLOROPHENOL	UG/KG	870 U	760	U	800 U	.810 U	
SS21 1.2 4-TRICHLOROBENZENE	:UG/KG	870 U	760	υ	800 U	:810 U	
SS22 NAPHTHALENE	UG/KG	870 U	760	U	800 U	810 U	
SS23 4-CHLOROANILINE	:UG/KG	870 U	760	U	800 U	810 U	
SS24 HEXACHLOROBUTADIENE, BY GC/MS	UG/KG	870 U	760	U	800 U	810 U	
SS25 4-CHLORO-3-METHYLPHENOL	UG/KG	870 U	760	U	800 U	810 U	
SS26 2-METHYLNAPHTHALENE	UG/KG	870 U	760	U	800 U	810 U	
SS27 HEXACHLOROCYCLOPENTADIENE, BY GC/MS	UG/KG	870 U	760	U	800 U	810 U	

COMPOUND	UNITS	006	007	008	008D	010F
SS28 2.4.6-TRICHLOROPHENOL	UG/KG	870 U	: 760	J :800 U	J 810 U	:
SS29 2,4,5-TRICHLOROPHENOL	UG/KG	4200 U	3700	J 3900 t	J 4000 U	:
SS30 2-CHLORONAPHTHALENE	UG/KG	870 U	760	J 800 (J 810 U	:
SS31 2-NITROANILINE	UG/KG	4200 U	3700	J : 3900 U	J : 4000 U	:
SS32 PHTHALATE, DIMETHYL, BY GC/MS	UG/KG	870 U	: 760	J :800 (J :810 U	:
SS33 ACENAPHTHYLENE, BY GC/MS	UG/KG	870 U	760	J 800 (J 810 U	:
SS34 3-NITROANILINE	UG/KG	4200 U	3700	J 3900 l	J 4000 U	:
SS35 ACENAPHTHENE, BY GC/MS	UG/KG	870 V	:760) :800 (์ 3 :810 บ	:
SS36 2,4-DINITROPHENOL	UG/KG	4200 U	3700	J : 3900	J : 4000 U	
SS37 4-NITROPHENOL	UG/KG	4200 U	:3700	J :3900 U	J : 4000 U	:
SS38 DIBENZOFURAN	UG/KG	870. บ	760	J :800 (J :810 U	
SS39 2,4-DINITROTOLUENE	UG/KG	870 U	760	J 800 t	J :810 U	:
SS40 2,6-DINITROTOLUENE	UG/KG	870 U	: 760	J : 800	I 810 U	:
SS41 PHTHALATE, DIETHYL, BY GC/MS	UG/KG	870 U	760	J :800 t	J :810	:
SS42 4-CHLOROPHENYL PHENYL ETHER	UG/KG	870 U	: 760	J 800 (J 810 U	:
SS43 FLUORENE, GC/MS	UG/KG	870 U	760	: 1400	.810 U	:
SS44 4-NITROANILINF	UG/KG	1200 U	3700	J . 3900 i	J :4000 U	
SS45 4,6-DINITRO-2-METHYLPHENOL	UG/KG	4200 U	3700	J :3900 l	J :4000 U	:
SS46 N-NITROSODIPHENYLAMINE	UG/KG	870 U	760	J :800	J :810 ປ	
SS47 4-BROMOPHENYL PHENYL ETHER	UG/KG	870 U	760	800	J 810 U	:
SS48 HEXACHLOROBENZENE BY GC/MS	UG/KG	870 U	: 760	J :800 (J 810 U	:
SS49 PENTACHLOROPHENOL	UG/KG	4200 U	:3700	J :3900 (J 4000 U	: :
SS50 PHENANTHRENE	UG/KG	1600	:3400	:5800	:2100	:
SS51 ANTHRACENE, BY GC/MS	UG/KG	870 U	: 760	J :890	810 U	:
SS52 PHTHALATE, DI-N-BUTYL-, BY GC/MS	UG/KG	870 U	: 760	J :800	ປ :810 ປ	:
SS53 FLUORANTHENE, BY GC/MS	UG/KG	1700	3400	4000	1200	:

SS54 PYRENE	COMPOUND	UNITS	006	007	008	008D	010F
SS56 3.3"-DICHLOROBENZIDINE UG/KG 1700 U 1500 U 1600 U 1	SS54 PYRENE	: : UG/KG	2600	: 1600	:3700	: 1400	: : :
\$557 ANTRACENE, BENZO(A), BY GC/MS \$558 PHTHALATE, BIS(2-ETHYLHEXYL), BY GC/MS \$060 U 800 U 810 U \$558 PHTHALATE, BIS(2-ETHYLHEXYL), BY GC/MS \$060 U 800 U 810 U \$559 CHRYSENE, BY GC/MS \$060 U 800 U 810 U \$559 CHRYSENE, BY GC/MS \$060 U 800 U 810 U \$559 CHRYSENE, BY GC/MS \$060 U 800 U 810 U \$559 FHTHALATE, DI-N-OCTYL-, BY GC/MS \$060 U 800 U 810 U \$060 U 81	SS55 PHTHALATE, BUTYL BENZYL	:UG/KG	: 870 U	760 U	:800 U	:810 U	
\$558 PHTHALATE. BIS(2=ETHYLHEXYL). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$559 CHRYSENE. BY GC/MS UG/KG 870 U 760 U 800 U 820 \$550 CHRYSENE. BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(B). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(B). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 870 U 760 U 800 U 810 U \$550 CHRYSENE. BENZO(K). BY GC/MS UG/KG 12 U 11 U 12 U 12 U 12 U 12 U 12 U 12	SS56 3,3'-DICHLOROBENZIDINE	: UG/KG	1700 U	: 1500 U	: 1600 U	:1600 U	:
SSSS CHRYSENE. BY GC/MS	SS57 ANTRACENE, BENZO(A), BY GC/MS	UG/KG	1500	: 2500	: 1900	810 U	:
SS60 PHTHALATE, DI=N=OCTYL=, BY GC/MS UG/KG 870 U 760 U 800 U 810 U	SS58 PHTHALATE, BIS(2-ETHYLHEXYL), BY GC/MS	UG/KG	870 U	: 760 U	800 U	810 U	
SS61 FLUORANTHENE, BENZO(B), BY GC/MS	SS59 CHRYSENE, BY GC/MS	UG/KG	870 U	760 U	800 U	820	
Second Fluoranthene Benzo(k) By GC/MS UG/KG 870 U 760 U 800 U 810 U 8563 Pyrene Benzo(k) By GC/MS UG/KG 1100 760 U 800 U 810 U 8564 Indeno(1,2,3-cd)Pyrene UG/KG 870 U 760 U 800 U 810 U 8565 Anthracene Dibenzo(a,h) By GC/MS UG/KG 870 U 760 U 800 U 810 U 8566 Perylene Benzo(g,h,i) By GC/MS UG/KG 870 U 760 U 800 U 810 U 8566 Perylene Benzo(g,h,i) By GC/MS UG/KG 870 U 760 U 800 U 810 U 8566 Perylene Benzo(g,h,i) By GC/MS UG/KG 870 U 760 U 800 U 810 U 8566 Perylene Benzo(g,h,i) By GC/MS UG/KG 870 U 760 U 800 U 810 U 8566 U 864 U 8566 U 864 U 864 U 8566 U 864 U 8566 U 8566 U 864 U 864 U 8666 U 86	SS60 PHTHALATE, DI-N-OCTYL-, BY GC/MS	UG/KG	870 U	760 U	800 U	810 U	
Second S	SS61 FLUORANTHENE, BENZO(B), BY GC/MS	UG/KG	1100 J	1000 J	:1200 J	810 U	:
SS64 INDENO(1,2,3-CD)PYRENE	SS62 FLUORANTHENE, BENZO(K), BY GC/MS	UG/KG	870 U	. 760 U	800 U	810 U	
SS65 ANTHRACENE	SS63 PYRENE, BENZO(A), BY GC/MS	UG/KG	1100	: 760 U	800 U	810 U	:
S566 PERYLENE, BENZO(G,H,I), BY GC/MS	SS64 INDENO(1,2,3-CD)PYRENE	UG/KG	870 U	760 U	800 U	810 U	
STO9 CYANIDE, TOTAL MG/KG 6.5 U 5.8 U 6.8 U 6.4 U SV03 CHLOROMETHANE. BY GC/MS UG/KG 12 U 11 U 12 U <td< td=""><td>SS65 ANTHRACENE, DIBENZO(A,H), BY GC/MS</td><td>UG/KG</td><td>870 U</td><td>760 U</td><td>:800 U</td><td>810 U</td><td></td></td<>	SS65 ANTHRACENE, DIBENZO(A,H), BY GC/MS	UG/KG	870 U	760 U	:800 U	810 U	
SV03 CHLOROMETHANE, BY GC/MS UG/KG: 12 U 11 U 12 U 12 U 25	SS66 PERYLENE, BENZO(G,H,I), BY GC/MS	UG/KG	870 U	.760 U	800 U	810 U	
SV04 BROMOMETHANE, BY GC/MS UG/KG: 12 U 11 U 12 U 12 U 25 U SV05 VINYL CHLORIDF UG/KG: 12 U 11 U 12 U 12 U 25 U SV06 CHLOROETHANE, BY GC/MS UG/KG: 12 U 11 U 12 U 12 U 25 U SV07 METHYLENE CHLORIDE UG/KG: 14 5.6 U 6.1 7.0 J 17 T SV08 1.1-DICHLOROETHYLENE UG/KG: 6.0 U 5.6 U 6.0 U 6.0 U 13 U SV10 TRANS-1.2-DICHLOROETHYLENE UG/KG: NA O NA	STO9 CYANIDE, TOTAL	MG/KG	6.5 U	5.8 U	6.8 U	6.4 U	
SV05 VINYL CHLORIDF UG/KG:12 U 11 U 12 U 12 U 25 U SV06 CHLOROETHANE. BY GC/MS UG/KG:12 U 11 U 12 U 12 U 25 U SV07 METHYLENE CHLORIDE UG/KG:14 5.6 U 6.1 7.0 J 17 SV08 1.1-DICHLOROETHYLENE UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U SV10 TRANS-1,2-DICHLOROETHYLENE UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U SV11 CHLOROFORM, BY GC/MS UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U SV12 1,2-DICHLOROETHANE UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U	SV03 CHLOROMETHANE, BY GC/MS	UG/KG	12 U	11 U	12 U	12 U	25 U
SVO6 CHLOROETHANE. BY GC/MS UG/KG: 12 U 11 U 12 U 12 U 25 U SVO7 METHYLENE CHLORIDE UG/KG: 14 5.6 U 6.1 7.0 J 17 SVO8 1.1-DICHLOROETHYLENE UG/KG: 6.0 U 5.6 U 6.0 U 6.0 U 13 U SV09 1.1-DICHLOROETHANE UG/KG: 6.0 U 5.6 U 6.0 U 6.0 U 13 U SV10 TRANS-1.2-DICHLOROETHYLENE UG/KG: NA O NA	SVO4 BROMOMETHANE, BY GC/MS	UG/KG	. 12 U	.11 U	12 U	12 U	25 V
SV07 METHYLENE CHLORIDE UG/KG:14 5.6 U 6.1 7.0 J 17 SV08 1.1-DICHLOROETHYLENE UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U SV09 1.1-DICHLOROETHANE UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U SV10 TRANS-1,2-DICHLOROETHYLENE UG/KG:NA O NA	SV05 VINYL CHLORIDF	UG/KG	12 U	.11 U	12 U	12 0	25 U
SV08 1,1-DICHLOROETHYLENE UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U SV09 1,1-DICHLOROETHANE UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U SV10 TRANS-1,2-DICHLOROETHYLENE UG/KG:NA O NA	SVO6 CHLOROETHANE, BY GC/MS	UG/KG	12 U	. 11 U	12 U	12 U	25 U
SV09 1.1-DICHLOROETHANE :UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U SV10 TRANS-1,2-DICHLOROETHYLENE :UG/KG:NA O NA O NA <td< td=""><td>SVO7 METHYLENE CHLORIDE</td><td>UG/KG</td><td>14</td><td>5.6 U</td><td>6.1</td><td>7.0 J</td><td>17</td></td<>	SVO7 METHYLENE CHLORIDE	UG/KG	14	5.6 U	6.1	7.0 J	17
SV10 TRANS-1,2-DICHLOROETHYLENE UG/KG:NA O NA	SVOR 1,1-DICHLOROETHYLENE	UG/KG	6.0 U	5.6 U	6.0 U	6.0 U	13 0
SV11 CHLOROFORM, BY GC/MS : UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U SV12 1,2-DICHLOROETHANE : UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U	SV09 1.1-DICHLOROETHANE	UG/KG	6.0 U	5.6 U	6.0 U	6.0 U	13 U
SV12 1,2-DICHLOROETHANE :UG/KG:6.0 U:5.6 U:6.0 U:6.0 U:13 U	SV10 TRANS-1,2-DICHLOROETHYLENE	UG/KG	NA O	NA O	:NA O	NA O	NA O
	SV11 CHLOROFORM, BY GC/MS	UG/KG	6.0 U	5.6 U	6.0 U	6.0 U	13 U
SV13 1,1,1-TRICHLOROETHANE UG/KG:6.0 U 5.6 U 6.0 U 6.0 U 13 U	SV12 1,2-DICHLOROETHANE	UG/KG	6.0 U	5.6 U	6.0 U	6.0 U	13 U
	SV13 1,1,1-TRICHLOROETHANE	UG/KG	6.0 U	5.6 U	6.0 U	6.0 U	13 U
SV14 CARBON TETRACHLORIDE, BY GC/MS : UG/KG:6.0 U:5.6 U:6.0 U:6.0 U: 13 U	SV14 CARBON TETRACHLORIDE, BY GC/MS	UG/KG	6.0 U	5.6 U	:6.0 U	6.0 U	13 U

ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: 1-DSX72

COMPOUND	UNITS	006			007	008		008D		010F	
SV15 BROMODICHLOROMETHANE. BY GC/MS	UG/KG	6.0	U	5.6	υ	6.0	U	6.0	บ	13	: U
SV16 1,2-DICHLOROPROPANE	UG/KG	6.0	U	5.6	U	6.0	U	:6.0	U	13	U :
SV17 BENZENE, BY GC/MS	UG/KG	6.0	U	5.6	U	6.0	U	:6.0	U	13	: U
SV18 TRANS-1,3-DICHLOROPROPENE	UG/KG	6.0	U	:5.6	U	6.0	U	6.0	U	13	U
SV19 TRICHLOROETHYLENE	UG/KG	6.0	U	5.6	U	6.0	U	6.0	U	13	U :
SV20 DICHLOROPROPENE, CIS-1,3-, BY GC/MS	UG/KG	6.0	U	5.6	U	6.0	U	6.0	U	13	U :
SV21 DIBROMOCHLOROMETHANE, BY GC/MS	UG/KG	6.0	U	5.6	V	6.0	U	6.0	U	13	U :
SV22 1,1,2-TRICHLOROETHANE	UG/KG	6.0	U	5.6	U	6.0	U	6.0	U	13	U
SV24 BROMOFORM, BY GC/MS	UG/KG	6.0	U	5.6	U	6.0	U	6.0	U	13	U
SV25 1,1,2,2-TETRACHLOROETHENE	UG/KG	13		22		20		21	J	13	U
SV26 TOLUENE	UG/KG	6.0	U	5.6	U	6.0	U	6.0	Ų	14	
SV27 1,1,2,2-TETRACHLOROETHANE	UG/KG	6.0	U	5.6	U	6.0	U	6.0	U	220	
SV28 CHLOROBENZENE, BY GC/MS	UG/KG	6.0	U	5.6	U	6.0	U	6.0	U	13	บ
SV29 ETHYL BENZENE, BY GC/MS	UG/KG	6.0	U	5.6	_ U	6.0	U	6.0	U	13	U
SV30 ACETONE, BY GC/MS	UG/KG	12	U	11	U	12	U	12	J	30	
SV31 CARBON DISULFIDE, BY GC/MS	UG/KG	6.0	U	:5.6	U	6.0	U	6.0	U	13	U
SV32 2-BUTANONE	UG/KG	12	U		11 ປ	12	U	12	ŧI	140	J
SV33 VINYL ACETATE	UG/KG	12	U	:	11 U	12	U	12	U	25	U .
SV34 2-HEXANONE	UG/KG	12	U		11 U	. 12	U	12	U	25	U
SV3E 4-METHYL-2-PENTANONE	UG/KG	12	U		11 U	12	U	12	U	25	U
SV36 STYRENE	UG/KG	6.0	U		5.6 U	6.0	U	6.0	U	13	U
SV37 XYLENES, TOTAL	UG/KG	6.0	U		5.6 U	6.0	U	6.0	U	13	υ
ZZO1 SAMPLE NUMBER	NA	: 006		:007		008		008		010	
ZZO2 ACTIVITY CODE	NA	DSX72		DSX72	<u> </u>	:DSX72		:DSX72		DSX72	

•	COMPOUND	UNITS 1	01	103	104	105F	106F
SMO1 SILVER	BY ICAP	MG/KG: 2.2	U :		: :	-:	:
SMO2 ALUMINUM,	TOTAL, BY ICAP	: MG/KG: 5300	:		: :	-:	:
SMO3 ARSENIC. T	OTAL, BY ICAP	:MG/KG:2.3	:- :		:	-:	:
SMO4 BARIUM, TO	TAL, BY ICAP	: MG/KG: 48	:		:	-:	:
SMO5 BERYLLIUM,	TOTAL, BY ICAP	:MG/KG:1.1	U		:	:	:
SMO6 CADMIUM, T	OTAL, BY ICAP	:MG/KG:1.1	U		:	-: :	:
SMO7 COBALT, TO	TAL, BY ICAP	MG/KG:11	U		:	-: 	:
SMO8 CHROMIUM,	TOTAL, BY ICAP	MG/KG:9.2	 :-		:	-:	:
SMO9 COPPER, TO	TAL, BY ICAP	MG/KG:5.6	:		:	:	:
SM10 IRON	BY ICAP	MG/KG: 9300			:	• :	:
SM11 MANGANESE	BY ICAP	MG/KG:300	J		:	-:	:
SM12 MOLYBDENUM	BY ICAP	MG/KG:NA	0		:	-:	:
SM13 NICKEL	BY ICAP	MG/KG:9.1	 :		:	-:	:
SM14 LEAD	BY ICAP	MG/KG: 12	:		:	- ;	:
SM15 ANTIMONY,	TOTAL, BY ICAP	MG/KG:13	U		:	-;	:
SM16 SELENIUM	BY ICAP	:MG/KG:1.1	U		:	-:	:
SM17 TITANIUM	BY ICAP	MG/KG:NA	0 :		:	- ;	:
SM18 THALLIUM	BY ICAP	MG/KG:2.2	U :		:	:	:
SM19 VANADIUM	BY ICAP	MG/KG:15					
SM20 ZINC	BY ICAP	:MG/KG:28	J			:	:
SM21 CALCIUM, T	OTAL, BY ICAP	MG/KG:13000	J		:	:	:
SM22 MAGNESIUM	BY ICAP	MG/KG:2100				:	:
SM23 SODIUM	BY ICAP	MG/KG:1100	U :				:
SM24 POTASSIUM	BY ICAP	MG/KG: 1100	U		:	:	
SM34 MERCURY	BY COLD VAPOR AA	MG/KG: 0.11	U		:	· · · · · · · · · · · · · · · · · · ·	:
SSO1 PHENOL		UG/KG: 730	U		- ,	 :	:

COMPOUND	UNITS		101	103	104	105F	106F
SSO2 CARBAZOLE	UG/KG	NA NA	0		:		
SSO3 ETHER, BIS(2-CHLOROETHYL), BY GC/MS	UG/KG	730	U		:		
SSO4 2-CHLOROPHENOL	UG/KG	730	U	·	:		·
SSO5 1,3-DICHLOROBENZENE	UG/KG	730	U		:		
SSO6 1,4-DICHLOROBENZENE	UG/KG	730	U		:		
SSO7 BENZYL ALCOHOL	UG/KG	730	U				
SSO8 1,2-DICHLOROBENZENE	UG/KG	730	U		:		
SSO9 2-METHYLPHENOL (O-CRESOL)	UG/KG	730	U				
SS10 WTHER, BIS(2-CHLOROISOPROPYL), BY GC/MS	UG/KG	730	U		:		
SS11 4-METHYLPHENOL (P-CRESOL)	UG/KG	730	U		:		
SS12 N-NITROSO-DIPROPYLAMINE	UG/KG	730	U :		:		
SS13 HEXACHLOROETHANE	UG/KG	730	U		:		
SS14 NITROBENZENE	UG/KG	730	U		:		
SS15 ISOPHORONE	UG/KG	730	U				
SS16 2-NITROPHENOL	UG/KG	730	U		:		
SS17 2,4-DIMETHYLPHENOL	UG/KG	730	U		:		
SS18 BENZOIC ACID, BY GC/MS	UG/KG	3500	U		:		
SS19 METHANE, BIS(2-CHLOROETHYOXY), BY GC/MS	UG/KG	730	U		:		
SS20 2,4-DICHLOROPHENOL	UG/KG	730	IJ		:	A CONTRACT OF THE PROPERTY OF	A REAL PROPERTY OF THE PARTY OF
SS21 1,2,4-TRICHLOROBENZENE	UG/KG	730	U				
SS22 NAPHTHALENE	UG/KG	730	U		;	·	· · · · · · · · · · · · · · · · · · ·
SS23 4-CHLOROANILINE	UG/KG	730	U		:		
SS24 HEXACHLOROBUTADIENE, BY GC/MS	UG/KG	730	U		:		
SS25 4-CHLORO-3-METHYLPHENOL	UG/KG	730	U		:		
SS26 2-METHYLNAPHTHALENE	UG/KG	730	U		:		
SS27 HEXACHLOROCYCLOPENTADIENE, BY GC/MS	UG/KG	730	U		:		

COMPOUND	UNITS	101	103	104	105F	106F
SS28 2.4.6-TRICHLOROPHENOL	: UG/KG:	730 U	: 	-:	:	:
SS29 2.4.5-TRICHLOROPHENOL	UG/KG:	3500 U	:	:	:	
SS30 2-CHLORONAPHTHALENE	UG/KG	730 U	:	-: - -	:	
SS31 2-NITROANILINE	UG/KG	3500 U	:	-: :	:	
SS32 PHTHALATE, DIMETHYL, BY GC/MS	UG/KG	730 U	: 	-:	:	
SS33 ACENAPHTHYLENE, BY GC/MS	UG/KG:	730 U	:	-: 	: - -	
SS34 3-NITROANILINE	UG/KG:	3500 U	:	-:	:	
SS35 ACENAPHTHENE, BY GC/MS	UG/KG	730 U	:	-:	:	
SS36 2,4-DINITROPHENOL	UG/KG:	3500 U	:	-:	:	
SS37 4-NITROPHENOL	UG/KG	3500 U	:		:	:
SS38 DIBENZOFURAN	UG/KG:	730 U		:	:	:
SS39 2,4-DINITROTOLUENE	UG/KG	730 U	:	-:	:	:
SS40 2,6-DINITROTOLUENE	UG/KG:	730 U	;	:	:	:
SS41 PHTHALATE, DIETHYL, BY GC/MS	UG/KG	730 U	:	:	:	
SS42 4-CHLOROPHENYL PHENYL ETHER	UG/KG	730 U	:	:	: -	
SS43 FLUORENE,GC/MS	UG/KG:	730 U	:	:	:	
SS44 4-NITROANILINE	UG/KG:	3500 U	:	:	:	
SS45 4.6-DINITRO-2-METHYLPHENOL	UG/KG	3500 U	:	:	:	:
SS46 N-NITROSODIPHENYLAMINE	UG/KG	730 U				
SS47 4-BROMOPHENYL PHENYL ETHER	UG/KG	730 U	• • • • • • • • • • • • • • • • • • •		:	·
SS48 HEXACHLOROBENZENE, BY GC/MS	UG/KG:	730 U		:	:	;
SS49 PENTACHLOROPHENOL	UG/KG:	3500 U	:			
SS50 PHENANTHRENE	UG/KG:	730 U	;	:	:	;
SS51 ANTHRACENE, BY GC/MS	UG/KG:	730 U	:	:	:	
SS52 PHTHALATE, DI-N-BUTYL-, BY GC/MS	UG/KG:	730 U	:	:		
SS53 FLUORANTHENE, BY GC/MS	UG/KG:	730 U	:	:	:	

COMPOUND	UNITS	101		103	104	105F	106F
SS54 PYRENE	UG/KG	730	U		:	:	
SS55 PHTHALATE; BUTYL BENZYL	:UG/KG	730	U		:	:	
SS56 3,3'-DICHLOROBENZIDINE	UG/KG	1500	U		:	:	
SS57 ANTRACENE, BENZO(A), BY GC/MS	UG/KG	730	U		:	:	
SS58 PHTHALATE, BIS(2-ETHYLHEXYL), BY GC/MS	: UG/KG	730	U		:	:	
SS59 CHRYSENE, BY GC/MS	UG/KG	730	U		:	:	
SS60 PHTHALATE, DI-N-OCTYL-, BY GC/MS	UG/KG	730	υ		:	:	
SS61 FLUORANTHENE, BENZO(B), BY GC/MS	UG/KG	730	U		:	:	:
SS62 FLUORANTHENE, BENZO(K), BY GC/MS	UG/KG	730	U		: :	:	
SS63 PYRENE, BENZQ(A). BY GC/MS	:UG/KG	730	U		:	:	:
SS64 INDENO(1,2,3-CD)PYRENE	UG/KG	730	U	:	:	:	:
SS65 ANTHRACENE, DIBENZO(A,H), BY GC/MS	UG/KG	730	U		:	:	:
SS66 PERYLENE, BENZO(G,H,I), BY GC/MS	UG/KG	730	U		:	:	:
STO9 CYANIDE, TOTAL	MG/KG	5.4	U		:	:	
SVO3 CHLOROMETHANE, BY GC/MS	UG/KG	11	U		:	:	:
SVO4 BROMOMETHANE, BY GC/MS	UG/KG	11	U	:	:	:	:
SVO5 VINYL CHLORIDE	UG/KG	11	Ų		:		:
SVO6 CHLOROETHANE, BY GC/MS	UG/KG	11	U		:	:	:
SVO7 METHYLENE CHLORIDE	UG/KG	5.3	U	:	:		
SVOS 1 1-DICHLOROETHYLENE	:UG/KG	5.3	U		:		
SV09 1.1-DICHLOROE,THANE	:UG/KG	5.3	U		:		:
SV10 TRANS-1.2-DICHLOROETHYLENE	:UG/KG	NA	0	:	:	:	;
SV11 CHLOROFORM, BY GC/MS	: UG/KG	5.3	U		:	:	:
SV12 1,2-DICHLOROETHANE	UG/KG	5.3	U	:	:	:	
SV13 1,1.1-TRICHLOROETHANE	UG/KG	5.3	U		:	:	
SV14 CARBON TETRACHLORIDE, BY GC/MS	UG/KG	5.3	U				

ANA	LYSIS REQUE	ST DETAI	L REPO	RT A	CTIVITY	: 1-DSX72			VALIDATE	D DATA
COMPOUND	UNITS	101		103		104		105F	106F	
SV15 BROMODICHLOROMETHANE, BY GC/MS	:: :UG/KG:5	3	U :			:	:		:	
SV16 1,2-DICHLOROPROPANE	:UG/KG:5.	3	U :			:	·: - -		:	
SV17 BENZENE, BY GC/MS	:UG/KG:5.	3	U :			: - 	:-		:	
SV18 TRANS-1,3-DICHLOROPROPENE	:UG/KG:5.	3	U :			: :	:-		:	
SV19 TRICHLOROETHYLENE	: UG/KG:5.	3	U :			: :	: :	*	:	
SV20 DICHLOROPROPENE, CIS-1,3-, BY GC/MS	:UG/KG:5.	3	U :			: 	:-		:	
SV21 DIBROMOCHLOROMETHANE, BY GC/MS	UG/KG:5.	3	U :			:	: - :		:	
SV22 1,1,2-TRICHLOROETHANE	UG/KG:5.	3	U :			:	 -:-		:	
SV24 BROMOFORM, BY GC/MS	: UG/KG:5.	3	U			:	 :-		:	
SV25 1,1,2,2-TETRACHLOROETHENE	: UG/KG: 13		:			:	:		:	
SV26 TOLUENE	: UG/KG:5	3	υ:			·:	:-		:	
SV27 1,1,2,2-TETRACHLOROETHANE	UG/KG:5.	3	U :			:	:-		:	
SV28 CHLOROBENZENE, BY GC/MS	:UG/KG:5.	3	U :			:	 :-		:	
SV29 ETHYL BENZENE, BY GC/MS	UG/KG:5.	3	U			:	:-		:	
SV30 ACETONE, BY GC/MS	UG/KG:11		U			:	 : -		:	
SV31 CARBON DISULFIDE, BY GC/MS	: UG/KG:5.	3	U :			:	:-		:	
SV32 2-BUTANONE	UG/KG:	11	υ:			:	:- :		:	
SV33 VINYL ACETATE	UG/KG:	11	U			:	 -:-		:	
SV34 2-HEXANONE	: UG/KG:	11	U :			:	:-			
SV35 4-METHYL-2-PENTANONE	:UG/KG:	11	υ:			·			:	
SV36 STYRENE	:UG/KG:	5.3	U :	·		:	:- :		:	
SV37 XYLENES, TOTAL	:UG/KG:	5.3	U :			·:	:- :		:	
WMO1 SILVER BY ICAP	:UG/L :		:	10	U	: 10	U		10	U
WMO2 ALUMINUM, TOTAL, BY ICAP	:UG/L :		:	200	U	200	:- U		200	U
WMO3 ARSENIC, TOTAL, BY ICAP	UG/L		:	10	U	:10			: 10	U
WMO4 BARIUM, TOTAL, BY ICAP	UG/L		:	200	- -	200	<u>-</u>		200	U

COMPOUND	UNITS	101	103		104	105F	1061	F
WMOS BERYLLIUM, TOTAL, BY ICAP	UG/L		:5.0	u	:	:	:5.0	: U
WMO6 CADMIUM, TOTAL, BY ICAP	UG/L		:5.0	U	:5.0 U	:	5.0	U
WMO7 COBALT, TOTAL, BY ICAP	UG/L :		:50	U	:50 U	:	50	U :
WMO8 CHROMIUM, TOTAL, BY ICAP	UG/L		10	U	: 10 U	:	10	U
WMO9 COPPER, TOTAL, BY ICAP	UG/L		25	U	:25 U	:	25	U
WM10 IRON BY ICAP	UG/L		100	U	100 U	: :	100	U
WM11 MANGANESE BY ICAP	UG/L		: 15	บ	: NA O	:	15	U :
WM12 MOLYBDENUM BY ICAP	UG/L		: NA	0	:15 U	:	NA	0
WM13 NICKEL BY ICAP	UG/L		40	υ	40 U	:	40	U
WM14 LEAD BY ICAP	UG/L		3.0	U	4.0 U	:	3.0	U
WM15 ANTIMONY, TOTAL, BY ICAP	UG/L		60	Ų	60 U		60	U
WM16 SELENIUM BY ICAP	UG/L		5.0	U	5.0 U	:	5.0	U
WM17 TITANIUM BY ICAP	UG/L		NA NA	0	NA O	:	NA NA	0
WM18 THALLIUM BY ICAP	UG/L		10	U	10 U	:	10	U
WM19 VANADIUM BY ICAP	UG/L		50	U	50 U	:	50	U
WM20 ZINC BY ICAP	UG/L		20	U	20 U	: 	20	U
WM21 CALCIUM, TOTAL BY ICAP	MG/L		71		65	:	5.0	U
WM22 MAGNESIUM, TOTAL BY ICAP	:MG/L		20		19	: :	5.0	U
WM23 SODIUM, TOTAL BY ICAP	:MG/L		7.8		:5.6		5.0	U
WM24 POTASSIUM, TOTAL BY ICAP	MG/L		5.0	U	5.0 U	:	5.0	U
WM34 MERCURY BY COLD VAPOR AA	UG/L		0.20	U	0.20 U		0.20	U :
WSO1 PHENOL	UG/L		20	U	:10 U	:	10	U
WSO3 ETHER, BIS(2-CHLOROETHYL), BY GC/MS	UG/L		: 20	U	:10 U	:	10	U
WSO4 2-CHLOROPHENOL	UG/L		20	U	:10 U	:	10	U
WSO5 1,3-DICHLOROBENZENE	UG/L		20	υ	10 U	:	10	U :
WSO6 1,4-DICHLOROBENZENE	UG/L		20	U	10 U		10	U :

NSO7 BENZYL ALCOHOL	COMPOUND	UNITS	101	103		104	105F	10	6F
MS09 2-METHYLPHENOL (O-CRESOL) UG/L 20	WSO7 BENZYL ALCOHOL	UG/L		20	U	10	J	: 10	
WS10 ETHER. BIS(2-CHLOROISOPROPYL), BY GC/MS UG/L 20	WSO8 1.2-DICHLOROBENZENE	UG/L		20	U	10	J :	10	U :
WS11 4-METHYLPHENOL (P-CRESOL) UG/L 20 U 10 U 10 U 10 U WS12 N-NITROSO-DIPROPYLAMINE UG/L 20 U 10 U 10 U 10 U WS13 HEXACHLOROSITIANE UG/L 20 U 10 U 10 U 10 U WS14 NITROBENZENE UG/L 20 U 10 U 10 U 10 U WS15 ISOPHORONE UG/L 20 U 10 U 10 U 10 U WS16 2-NITROPHENOL UG/L 20 U 10 U 10 U 10 U WS17 2,4-PIMETHYLPHENOL UG/L 20 U 10 U 10 U 10 U WS18 BENZOIC ACID, BY GC/MS UG/L 20 U 10 U 10 U 10 U WS18 BENZOIC ACID, BY GC/MS UG/L 20 U 10 U 10 U 10 U WS20 2,4-PICHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS20 2,4-PICHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS21 1,2-4-TRICHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS22 N2PHTHALENE UG/L 20 U 10 U 10 U 10 U WS23 4-CHLOROSITIANE UG/L 20 U 10 U 10 U 10 U WS24 HEXACHLOROSUTADIENE UG/L 20 U 10 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U 10 U WS26 2-METHYLNPHTHALENE UG/L 20 U 10 U 10 U 10 U WS27 HEXACHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS27 HEXACHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS26 2-4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS27 HEXACHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS26 2-4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS27 LEXACHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS27 LEXACHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS28 2.4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS28 2.4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U 10 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U 10 U UW WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U 10 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U 10 U WS30 2-CHLOROPHTHALENE UG/L 20 U 10 U 10 U 10 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U 10 U WS30 2-CHLORONAPHTHALENE UG/	WSO9 2-METHYLPHENOL (O-CRESOL)	UG/L		20	U	10		10	U
WS12 N-NITROSO-DIPROPYLAMINE	WS10 ETHER, BIS(2-CHLOROISOPROPYL), BY GC/MS	UG/L		20	U	10	j	:10	U
WS13 HEXACHLOROETHANE	WS11 4-METHYLPHENOL (P-CRESOL)	UG/L	_	20	U	10	J	10	U
NS14 NITROBENZENE UG/L 20	WS12 N-NITROSO-DIPROPYLAMINE	UG/L		20	U	10	- :	10	U
WS15 ISOPHORONE	WS13 HEXACHLOROETHANE	UG/L		20	U	10	J :	10	U
WS16 2-NITROPHENOL UG/L 20	WS14 NITROBENZENE	UG/L		20	บ	10) :	:10	υ
WS17 2.4-DIMETHYLPHENOL UG/L 20	WS15 ISOPHORONE	UG/L		20	U	10	J :	10	U
WS18 BENZOIC ACID, BY GC/MS UG/L WS19 METHANE, BIS(2-CHLOROETHYOXY), BY GC/MS UG/L UG/L WS20 2,4-DICHLOROPHENOL UG/L WS21 1,2,4-TRICHLOROBENZENE UG/L WS21 1,2,4-TRICHLOROBENZENE UG/L WS22 NAPHTHALENE UG/L WS23 4-CHLOROANILINE UG/L WS24 HEXACHLOROBUTADIENE, BY GC/MS UG/L UG/L UG/L 20 U 10 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L WS26 2-METHYLNAPHTHALENE UG/L WS27 HEXACHLOROCYCLOPENTADIENE, BY GC/MS UG/L UG/L UG/L 20 U 10 U U WS28 2,4,6-TRICHLOROPHENOL UG/L UG/	WS16 2-NITROPHENOL	UG/L		20	U	10		10	U
WS19 METHANE. BIS(2-CHLOROETHYOXY). BY GC/MS UG/L 20 U 10 U 10 U 10 U WS20 2.4-DICHLOROPHENOL UG/L 20 U 10 U 10 U 10 U 10 U WS21 1.2.4-TRICHLOROBENZENE UG/L 20 U 10 U	WS17 2,4-DIMETHYLPHENOL	:UG/L :		20	U	10		10	U
WS20 2.4-DICHLOROPHENOL UG/L 20 U 10 U 10 U WS21 1.2.4-TRICHLOROBENZENE UG/L 20 U 10 U 10 U WS22 NAPHTHALENE UG/L 20 U 10 U 10 U WS23 4-CHLOROANILINE UG/L 20 U 10 U 10 U WS24 HEXACHLOROBUTADIENE BY GC/MS UG/L 20 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U WS26 2-METHYLNAPHTHALENE UG/L 20 U 10 U 10 U WS27 HEXACHLOROCYCLOPENTADIENE BY GC/MS UG/L 20 U 10 U 10 U WS28 2.4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U WS29 2.4.5-TRICHLOROPHENOL UG/L 100 U 50 U 50 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 50 U	WS18 BENZOIC ACID, BY GC/MS	UG/L		100	U	50	J	50	U
WS21 1,2,4-TRICHLOROBENZENE UG/L 20 U 10 U 10 U WS22 NAPHTHALENE UG/L 20 U 10 U 10 U WS23 4-CHLOROANILINE UG/L 20 U 10 U 10 U WS24 HEXACHLOROBUTADIENE, BY GC/MS UG/L 20 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U WS26 2-METHYLNAPHTHALENE UG/L 20 U 10 U 10 U WS27 HEXACHLOROCYCLOPENTADIENE, BY GC/MS UG/L 20 U 10 U 10 U WS28 2,4,6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U WS29 2,4,5-TRICHLOROPHENOL UG/L 20 U 10 U 50 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 50 U WS31 2-NITROANILINE (ORTHO NITROANILINE) UG/L 100 U 50 U 50 U	WS19 METHANE, BIS(2-CHLOROETHYOXY), BY GC/MS	UG/L		20	U	:10	J :	10	υ
WS22 NAPHTHALENE UG/L 20 U 10 U 10 U WS23 4-CHLOROANILINE UG/L 20 U 10 U 10 U WS24 HEXACHLOROBUTADIENE, BY GC/MS UG/L 20 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U WS26 2-METHYLNAPHTHALENE UG/L 20 U 10 U 10 U WS27 HEXACHLOROCYCLOPENTADIENE, BY GC/MS UG/L 20 U 10 U 10 U WS28 2.4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U WS29 2.4.5-TRICHLOROPHENOL UG/L 100 U 50 U 50 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U WS31 2-NITROANILINE (ORTHO NITROANILINE) UG/L 100 U 50 U 50 U	WS20 2,4-DICHLOROPHENOL	UG/L		20	U	:10	J :	10	บ
WS23 4-CHLOROANILINE UG/L 20 U 10 U 10 U 10 U WS24 HEXACHLOROBUTADIENE.BY GC/MS UG/L 20 U 10 U	WS21 1,2,4-TRICHLOROBENZENE	UG/L		20	U	10	J :	10	U
WS24 HEXACHLOROBUTADIENE, BY GC/MS UG/L 20 U 10 U 10 U WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U WS26 2-METHYLNAPHTHALENE UG/L 20 U 10 U 10 U WS27 HEXACHLOROCYCLOPENTADIENE, BY GC/MS UG/L 20 U 10 U 10 U WS28 2.4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U WS29 2.4.5-TRICHLOROPHENOL UG/L 100 U 50 U 50 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U WS31 2-NITROANILINE (ORTHO NITROANILINE) UG/L 100 U 50 U 50 U	WS22 NAPHTHALENE	UG/L		20	U	10	J :	10	U
WS25 4-CHLORO-3-METHYLPHENOL UG/L 20 U 10 U 10 U WS26 2-METHYLNAPHTHALENE UG/L 20 U 10 U 10 U WS27 HEXACHLOROCYCLOPENTADIENE BY GC/MS UG/L 20 U 10 U 10 U WS28 2.4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U WS29 2.4.5-TRICHLOROPHENOL UG/L 100 U 50 U 50 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U WS31 2-NITROANILINE (ORTHO NITROANILINE) UG/L 100 U 50 U 50 U	WS23 4-CHLOROANILINE	UG/L		20	U	10	J :	10	U
WS26 2-METHYLNAPHTHALENE UG/L 20 U 10 U 10 U WS27 HEXACHLOROCYCLOPENTADIENE.BY GC/MS UG/L 20 U 10 U 10 U WS28 2.4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U WS29 2.4.5-TRICHLOROPHENOL UG/L 100 U 50 U 50 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U WS31 2-NITROANILINE (ORTHO NITROANILINE) UG/L 100 U 50 U 50 U	WS24 HEXACHLOROBUTADIENE, BY GC/MS	UG/L		20	U	10	J :	10	U
WS27 HEXACHLOROCYCLOPENTADIENE BY GC/MS UG/L 20 U 10 U 10 U WS28 2.4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U WS29 2.4.5-TRICHLOROPHENOL UG/L 100 U 50 U 50 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U WS31 2-NITROANILINE (ORTHO NITROANILINE) UG/L 100 U 50 U 50 U	WS25 4-CHLORO-3-METHYLPHENOL	UG/L :		20	U	:10	J :	10	<u> </u>
WS28 2.4.6-TRICHLOROPHENOL UG/L 20 U 10 U 10 U WS29 2.4.5-TRICHLOROPHENOL UG/L 100 U 50 U 50 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U WS31 2-NITROANILINE (ORTHO NITROANILINE) UG/L 100 U 50 U 50 U	WS26 2-METHYLNAPHTHALENE	UG/L		20	U	10	J :	: 10	U
WS29 2,4.5-TRICHLOROPHENOL UG/L 100 U 50 U 50 U WS30 2-CHLORONAPHTHALENE UG/L 20 U 10 U 10 U WS31 2-NITROANILINE (ORTHO NITROANILINE) UG/L 100 U 50 U 50 U	WS27 HEXACHLOROCYCLOPENTADIENE BY GC/MS	UG/L		20	U	10	J :	: 10	บ
WS30 2-CHLORONAPHTHALENE	WS28 2.4.6-TRICHLOROPHENOL	UG/L		20	· U	10	J	10	U
WS31 2-NITROANILINE (ORTHO NITROANILINE) UG/L 100 U 50 U 50 U	WS29 2,4,5-TRICHLOROPHENOL	UG/L :		100	U	50	J :	50	บ
;;;;;;;	WS30 2-CHLORONAPHTHALENE	UG/L :		20	U	10	J :	:10	U
WS32 PHTHALATE, DIMETHYL, BY GC/MS : UG/L : 20 U :10 U : 10 U	WS31 2-NITROANILINE (ORTHO NITROANILINE)	UG/L		100	U	50	J :	:50	U
	WS32 PHTHALATE, DIMETHYL, BY GC/MS	UG/L		20	U	10	J :	10	U

COMPOUND	UNITS	101	103		104		105F	100	6F
WS33 AÇENAPHTHYLENE, BY GC/MS	UG/L		20	U	10	U :		10	U
WS34 3-NITROANILINE	UG/L		100	U	50	U		50	บ
WS35 ACENAPHTHENE, BY GC/MS	UG/L		20	U	10	υ :		10	U
WS36 2,4-DINITROPHENOL	UG/L		: 100	U	:50	U	- 	:50	U
WS37 4-NITROPHENOL	UG/L		: 100	U	50	U :		50	U
WS38 DIBENZOFURAN	UG/L		20	U	10	U		10	U
WS39 2,4-DINITROTOLUENE	UG/L		20	· U	10	U		10	U
WS40 2,6-DINITROTOLUENE	UG/L		20	U	10	U		10	U
WS41 PHTHALATE, DIETHYL, BY GC/MS	UG/L		20	U	10	U		10	U
WS42 4-CHLOROPHENYL PHENYL ETHER	UG/L		20	U	10	U		10	Ų
WS43 FLUORENE, BY GC/MS	UG/L		20	U	:10	U		10	U
WS44 4-NITROANILINE	UG/L		100	U	50	V		50	U
WS45 4,6-DINITRO-2-METHYLPHENOL	UG/L		100	U	50	U		50	U
WS46 N-NITROSODIPHENYLAMINE	UG/L		20	U	10	V		10	U
WS47 4-BROMOPHENYL PHENYL ETHER	UG/L :		20	U	10	U		10	U
WS48 HEXACHLOROBENZENE, BY GC/MS	UG/L		: 20	U	10	U		10	U
WS49 PENTACHLOROPHENOL	UG/L		100	U	50	U	 -	50	U
WS50 PHENANTHRENE	UG/L		20	U	10	U		10	บ
WS51 ANTHRACENE, BY GC/MS	UG/L		20	U	:10	U		10	Ų
WS52 PHTHALATE, DI-N-BUTYL-, BY GC/MS	UG/L		20	U	10	U		10	. U
WS53 FLUORANTHENE BY GC/MS	UG/L		20	U	:10	U		10	Ų
WS54 PYRENE	UG/L		20	U	10	U		10	Ų
WS55 PHTHALATE, BUTYL BENZYL	UG/L		20	U	10	U		10	U
WS56 3,3'-DICHLOROBENZIDINE	UG/L		40	υ	20	U	*****	20	U
WS57 ANTHRACENE, BENZO(A), BY GC/MS	UG/L		20	U	10	U		10	U
WS58 PHTHALATE, BIS(2-ETHYLHEXYL), BY GC/MS	UG/L		20	U	10	U		10	U

COMPOUND	UNITS	101 103		104		105F		106F		
WS59 CHRYSENE, BY GC/MS	UG/L		: : 20	 U	: 10	U			10	U
WS60 PHTHALATE, DI-N-OCTYL-, BY GC/MS	UG/L		20	U	:10	U			: 10.	U
WS61 FLUORANTHENE, BENZO(B), BY GC/MS	UG/L		20	U	10	U :			10	U
WS62 FLUORANTHENE, BENZSO(K), BY GC/MS	UG/L		: 20	U	: 10	U			: 10	U
WS63 PYRENE, BENZO(A), BY GC/MS	UG/L		20	U	10	U :			10	บ
WS64 INDENO(1,2,3-CD)PYRENE	UG/L		20	U	10	U			10	U
WS65 ANTHRACENE, DIBENZO(A,H), BY GC/MS	UG/L		20	U	10	U			10	U
WS66 PERYLENE, BENZO(G,H,I), BY GC/MS	UG/L		: 20	U	10	U			10	U
WS67 CARBAZOLE	UG/L		: NA	0	: NA	0			: NA	0
WTO9 CYANIDE, TOTAL	MG/L		:0.020	U	:0.010	U :			0.010	U
WVO3 CHLOROMETHANE, BY GC/MS	UG/L		10	υ	: 10	บ :	10	บ	10	u
WVO4 BROMOMETHANE, BY GC/MS	UG/L		10	U	10	U :	10	U	10	U
WVO5 VINYL CHLORIDE	UG/L		: 10	U	:10	U	10	U	10	U
WVO6 CHLOROETHANE, BY GC/MS	UG/L		10	U	10	U	10	Ų	10	U
WVO7 METHYLENE CHLORIDE	UG/L		5.0	U	:5.0	U	5.0	υ	5.0	U
WVO8 1,1-DICHLOROETHENE	UG/L		:5.0	υ	:5.0	U	5.0	U	5.0	U
WVO9 1.1-DICHLOROETHANE	UG/L		:5.0	U	5.0	U	5.0	U	5.0	U
WV10 1.2-DICHLOROETHENE, TOTAL	UG/L		5.0	U	5.0	U	5.0	U	5.0	U
WV11 CHLOROFORM, BY GC/MS	UG/L		5.0	U	5.0	U	5.0	υ	5.0	U
WV12 1,2-DICHLOROETHANE	UG/L		5.0	U	5.0	U	5.0	U	5.0	U
WV13 1.1.1-TRICHLOROETHANE	UG/L		5.0	U	:5.0	U	5.0	U	5.0	U
WV14 CARBON TETRACHLORIDE, BY GC/MS	UG/L		5.0	U	5.0	U	5.0	U	5.0	U
WV15 BROMODICHLOROMETHANE, BY GC/MS	UG/L		:5.0	U	:5.0	υ:	5.0	υ	5.0	บ
WV16 1,2-DICHLOROPROPANE	UG/L		:5.0	U	:5.0	U :	5.0	U	5.0	U
WV17 BENZENE, BY GC/MS	UG/L		5.0	U	5.0	U	5.0	U	5.0	U
WV19 TRICHLOROETHENE	UG/L		5.0	U	5.0	U	5.0	U	5.0	U
	::		:		· :	:				

ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: 1-DSX72

COMPOUND	UNITS	101	103		104		105F		106F	
WV20 DICHLOROPROPENE, CIS-1.3 BY GC/MS	UG/L	:	:5.0	บ	:5.0	U	5.0	u	:5.0	บ
WV21 DIBROMOCHLOROMETHANE, BY GC/MS	UG/L	:	:5.0	U	:5.0	U	5.0	บ	5.0	U
WV22 1,1,2-TRICHLOROETHANE	UG/L	:	5.0	U	5.0	บ	5.0	U	5.0	U
WV24 BROMOFORM, BY GC/MS	UG/L	:	5.0	Ū	5.0	U	5.0	U	5.0	U
WV25 TETRACHLOROETHENE	UG/L		5.0	U	5.0	U	5.0	U	5.0	U
WV26 TOLUENE	UG/L	:	5.0	U	5.0	U	5.0	U	5.0	U
WV27 1,1,2,2-TETRACHLOROETHANE	UG/L	:	5.0	U	5.0	U	5.0	U	5.0	U
WV28 CHLOROBENZENE, BY GC/MS	UG/L	:	5.0	U	5.0	U	5.0	U	5.0	U
WV29 ETHYL BENZENE, BY GC/MS	UG/L	:	5.0	υ	5.0	U	5.0	U	5.0	· U
WV30 ACETONE, BY GC/MS	UG/L	:	10	U	10	U	30		10	U
WV31 CARBON DISULFIDE, BY GC/MS	:UG/L	:	5.0	υ	5.0	U	5.0	U	5.0	υ
WV32 2-BUTANONE	UG/L		10	U	10	U	10	U	10	U
WV33 VINYL ACETATE	UG/L		10	U	10	U	10	U	10	U
WV34 2-HEXANONE	UG/L	:	10	U	10	U	10	U	10	U
WV35 4-METHYL-2-PENTANONE	UG/L		10	U	10	U	10	U	10	U
WV36 STYRENE	UG/L		5.0	U	5.0	U	5.0	U	5.0	U
WV37 XYLENES, TOTAL	UG/L		5.0	U	5.0	U	5.0	U	5.0	U
WV40 TRANS-1,3-DICHLOROPROPENE	UG/L		5.0	U	5.0	U	5.0	U	5.0	U
ZZO1 SAMPLE NUMBER	NA	101	103		104		105		106	
ZZOŻ ACTIVITY CODE	NA	DSX72	DSX72		DSX72		:DSX72		DSX72	

ACTIVITY DSX72 CEDAR FALLS FMGP

THE PROJECT LEADER SHOULD CIRCLE ONE - STORET, AIRS, OR ARCHIVE.

CIRCLE ONE:

STORET

AIRS

ARCHIVE

DATA APPROVED BY LABO FOR TRANSMISSION TO PROJECT LEADER ON 09/12/91 15:58:53 BY

FOR A. J

ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology, Inc.

ESAT Region VII

ManTech Env. Serv. Inc.

ManTech Environmental Services, Inc.

25 Funston Road

Kansas City, KS 66115

(913) 551-5000

The Bionetics Corp.

TO:

Barry Evans

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

_ John Gilchrist

ESAT Data Reviewer

THRU:

Ronald A. Ross

ESAT Team Manager

agen

DATE:

August 26, 1991

SUBJECT:

Review of volatile and semivolatile organic data for

CEDAR FALLS FMGP Site.

TID#. 07-9103-535

ASSIGNMENT# 931

ICF ACCT# 26-535-02

MANTECH S.O.# 1073-535

ESAT Document No. ESAT-VII-535-0189

These data were reviewed primarily according to the general "Laboratory Data Validation Functional Guidelines for Evaluating Organic Analyses," February 1988 revision with changes given in the Region VII Organic Data Review Training Manual and EPA memorandums.

The following comments and attached data sheets are a result of the ESAT review, according to EPA policies, of the following data from the contract laboratory.

CASE NO.: <u>SAS 6568G</u>
SITE: <u>CEDAR FALLS FMGP</u>
REVIEWER: <u>John Gilchrist</u>

LABORATORY: <u>AATS</u>
METHOD NO.: <u>CS0288A</u>
EPA ACTIVITY NO.: <u>DSX72</u>

MATRIX: SOIL

VOLATILES SOIL

SEMIVOLATILES SOIL

		5012	
SMO Sample No.	EPA Sample No.	SMO Sample No.	EPA Sample No.
6568G001	DSX72001	.6568G017	DSX72001
6568G002	DSX72002	6568G018	DSX72002
6568G003	DSX72003	6568G019	DSX72003
6568G004	DSX72004	6568G020	DSX72004
6568G005	DSX72005	6568G021	DSX72005
6568G006	DSX72006	6568G022 🔫 -	DSX72006
6568G007	DSX72007	6568G023	DSX72007
6568G008	DSX72008	6568G024	DSX72008
6568G009	DSX72008D	6568G025	DSX72008D
6568G011	DSX72101	6568G026	DSX72101

GENERAL

This data review assignment covers 10 SOIL samples analyzed for VOLATILES and 10 SOIL samples analyzed for SEMIVOLATILES for SAS number 6568G. There were no field blanks, two field duplicates and no performance evaluation samples included with this assignment. Data review was performed at level two.

1. Holding Times and Preservation

Volatiles: No technical holding times are specified for soil samples.

Semivolatiles: No technical holding times are specified for holding times from collection to extraction for soil samples. Technical holding times were observed for subsequent analysis of extracts.

2. GC/MS Tuning

Volatiles: All relative ion abundances were within the established control limits.

Semivolatiles: All relative ion abundances were within the established control limits.

3. Initial and Continuing Calibration

Volatiles: All compounds met the criteria of 0.05 for response factors for both initial and continuing calibrations. All compounds were within control limits for %RSD in the initial calibrations. Several compounds were outside the 25% criteria for % difference in the continuing calibrations. Acetone was J coded in sample DSX72001 due to these results.

Semivolatiles: All compounds met the criteria of 0.05 for response factors for both initial and continuing calibrations. Several compounds were outside the control limits for %RSD and % difference criteria for initial and continuing calibrations. Benzo(b) Fluoranthene was J coded in samples DSX72006, DSX72007, and DSX72008 due to these results.

4. Internal Standard Response

Volatiles: Internal standards 1,4-Difluorobenzene and Chlorobenzene were outside control limits in the initial analysis of DSX72008D. All internal standards were within control limits on the re-analysis of this sample. No data were qualified due to this occurrence.

Semivolatiles: All internal standard criteria were within control limits.

5. Blanks

Volatiles: Acetone, 2-Hexanone, and Chloroform were detected in the method blanks at levels below the CRDL. Acetone was U coded in sample DSX72008D, due to this occurrence.

Semivolatiles: No contaminants were found in the method blanks.

6. <u>Burroqate Recovery</u>

Volatiles: Surrogate compound recoveries were out of control limits for sample DSX72008D, both for initial and re-analysis. Toluene-d8 was outside of contract required QC limits on the initial analysis. 1,2-Dichloroethane-d4 was outside control limits on the re-analysis of DSX72008D. As a result, Methylene Chloride and Tetrachloroethene were qualified with a J code in this sample.

Semivolatiles: Surrogate compound recoveries for 2,4,6-Tribromophenol were out of control limits for samples DSX72002, DSX72003, DSX72004, and DSX74005. No data were qualified by this result.

7. Matrix Spike/Matrix Spike Duplicate Recovery

Volatiles: Matrix spike/Matrix spike values were all within the control ranges.

Semivolatiles: Matrix spike/Matrix spike values were all within the control ranges.

8. Performance Evaluation Sample

There were no performance evaluation samples included with this sample package.

9. Compound Identification and Ouantitation

Due to the requested review level, results listed on the summary forms were used for the review. These results were not checked against the raw data for accuracy, and calculations were not verified.

10. Summary

Volatiles: Calibration outliers resulted in qualification of data for one compound in one sample. Blank contamination caused qualification in one sample. Surrogate outliers caused J coding on one sample.

Semivolatiles: Calibration outliers resulted in data qualification in three samples. Surrogate outliers did not result in any data qualification.